Microwave Pulse Propagation inside a 3D Heart Model
Abstract
The electrodynamically rigorous solution of Maxwell’s equations related to the microwave pulse propagation inside a threedimension heart model is presented in this article. The boundary problem was solved by using the singular integral equations’ method. The carrier microwave frequency is 10 GHz. The modulating signals are triangular and rectangular video pulses with the on-off time ratio equal to 3 and 30 for each of pulses. The model heart was limited by a non-coordinate shape surface and it consisted of two different size cavities. The heart cavities were schematic images of the left and right atriums and ventricles. In our calculations the cavities were filled with blood and the walls of the heart consisted of myocardium tissue. The microwave electric field distributions was analysed at three longitudinal cross-sections of the heart model. It is shown that the microwave electric field distribution inside of the heart model most notably depends on the on-off time ratio and form of modulating video pulses. Ill. 5, bibl. 18 (in English; summaries in English, Russian and Lithuanian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.