Evaluating the Efficacy of Real-Time Connected Vehicle Basic Safety Messages in Mitigating Aberrant Driving Behaviour and Risk of Vehicle Crashes: Preliminary Insights from Highway Scenarios
DOI:
https://doi.org/10.5755/j02.eie.35601Keywords:
Connected vehicles, Basic safety messages, Advanced driver assistant systems, Intelligent vehicles, Artificial intelligenceAbstract
Connected vehicle (CV) technology has revolutionised the intelligent transportation management system by providing new perspectives and opportunities. To further improve risk perception and early warning capabilities in intricate traffic scenarios, a comprehensive field test was conducted within a CV framework. Initially, data for basic safety messages (BSM) were systematically gathered within a real-world vehicle test platform. Subsequently, an innovative approach was introduced that combined multimodal interactive filtering with an advanced vehicle dynamics model to integrate BSM vehicle motion data with observations from roadside units. In addition, a driving condition perception methodology was developed, leveraging rough sets and an enhanced support vector machine (SVM), to identify aberrant driver behaviours and potential driving risks effectively. Furthermore, this study integrated BSM data from various scenarios, including car-following, lane changes, and free driving within the CV environment, to formulate multidimensional driving state sequence patterns for short-term predictions (0.5 s) utilising the long short-term memory (LSTM) model framework. The results demonstrated the effectiveness of the proposed approach in accurately identifying potentially hazardous driving conditions and promptly predicting collision risks. The findings from this research hold substantial promise in advancing road traffic safety management.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Funding data
-
Natural Science Foundation of Jiangxi Province
Grant numbers 20201BBE51015 -
Natural Science Foundation of Jiangxi Province
Grant numbers 20224BAB204066