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Abstract—Connected vehicle (CV) technology has 

revolutionised the intelligent transportation management 

system by providing new perspectives and opportunities. To 

further improve risk perception and early warning capabilities 

in intricate traffic scenarios, a comprehensive field test was 

conducted within a CV framework. Initially, data for basic 

safety messages (BSM) were systematically gathered within a 

real-world vehicle test platform. Subsequently, an innovative 

approach was introduced that combined multimodal interactive 

filtering with an advanced vehicle dynamics model to integrate 

BSM vehicle motion data with observations from roadside units. 

In addition, a driving condition perception methodology was 

developed, leveraging rough sets and an enhanced support 

vector machine (SVM), to identify aberrant driver behaviours 

and potential driving risks effectively. Furthermore, this study 

integrated BSM data from various scenarios, including car-

following, lane changes, and free driving within the CV 

environment, to formulate multidimensional driving state 

sequence patterns for short-term predictions (0.5 s) utilising the 

long short-term memory (LSTM) model framework. The results 

demonstrated the effectiveness of the proposed approach in 

accurately identifying potentially hazardous driving conditions 

and promptly predicting collision risks. The findings from this 

research hold substantial promise in advancing road traffic 

safety management. 

 
Index Terms—Connected vehicles; Basic safety messages; 

Advanced driver assistant systems; Intelligent vehicles; 

Artificial intelligence. 

I. INTRODUCTION 

The rapid advancement of connected vehicle (CV) 

technology has opened up new perspectives in road safety, 

particularly in terms of perception of driving risk and 

collision avoidance. As vehicle-to-vehicle (V2V) 

communication, vehicle-to-infrastructure (V2I), and related 

technologies continue to evolve, they hold substantial 

promise for improving road safety, alleviating traffic 

congestion, and elevating driving comfort [1]. Consequently, 

research on vehicle safety within the CV realm has gained 

increasing attention. This study, rooted in the basic safety 

message (BSM) data set derived from CV under the Standard 

of Society of Automotive Engineers (SAE) J2735 protocol 

[2], [3], places a focal point on the perception of driving risk 

and early warnings. It meticulously selects and efficiently 

integrates CV standardised driving safety information, 

examining challenges encompassing vehicle motion data 

acquisition, real-time assessment of potential risk conditions, 

and risk alerts concerning potential forward collisions, all 

through the fusion of vehicle-to-infrastructure (V2I) data. 

In typical human driving scenarios, drivers manoeuvre 

their vehicles at safe distances from adjacent vehicles 

primarily relying on their visual acumen and subjective 

judgments. In emergency situations, drivers engage in a 

sequence of braking manoeuvres to rapidly increase the safe 

distance from oncoming vehicles, thus immediately 

mitigating collision risks. In light of this, our study posits that 

emergency braking serves as a straightforward criterion 

reflecting the likelihood of a vehicle collision or a pre-

collision scenario. Predicting and promptly warning the 

driver of such situations can significantly reduce the 

probabilities of accidents. 

To address this challenge, we thoroughly gathered BSM 

data and integrated them into a real-world connected vehicle 

test system, capturing vehicle dynamics, motion status, and 

driver behaviour. In addition, artificial intelligence 
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algorithms were employed to forecast driver behaviour 

patterns and assess vehicle collision risks. In particular, a 

multidimensional long short-term memory (LSTM) model 

proved particularly adept at extracting meaningful insights 

from a continuous series of BSMs for predicting 

acceleration/deceleration due to emergency braking. The 

findings of this study lay the foundation for the advancement 

of the convergence of transportation technology, information 

technology, and automotive technology. Specifically, they 

serve as a reference point to enhance the precision and real-

time capabilities of driver risk warning systems. 

The remainder of this paper unfolds as follows. Section II 

conducts a comprehensive review of the relevant literature, 

elucidating the objectives of the study. In Section III, we 

introduce the proposed methodology and modelling 

framework. Section IV provides an in-depth description of 

the data sets utilised and delineates the detailed data 

processing procedures. Section V engages in a discussion of 

the results obtained, and, lastly, Section VI draws our 

conclusions. 

II. LITERATURE REVIEW 

Traditional vehicle trajectory tracking methods are mainly 

based on the combination of the vehicle dynamics model and 

Kalman filter algorithm. The three-dimensional kinematics 

model, based on the traditional vehicle dynamics model, 

mitigates the significant trajectory error often encountered 

when processing a single scene. These models have been 

enhanced through integration with a layered trajectory 

tracking system that incorporates an interactive particle filter 

[4], [5]. Kluga, Kluga, and Vecvagars [6] proposed a low-cost 

complex navigation system for land vehicles, which 

effectively improves the robustness of vehicle state 

estimation. Karamat, Atia, and Noureldin [7] introduced an 

improved error model for reduced inertial sensor systems 

(RISS) that takes into account vehicle tilt and accelerometer 

observation errors. The proposed method was tested on real 

trajectory data collected in the environment of GPS signal 

attenuation, and the navigation performance improved 

significantly compared to the traditional GPS system. To 

reduce the computational complexity of accurate positioning, 

Li, Gao, Zhang, and Qiu [8] used roadside devices to improve 

auxiliary positioning. Real-time update of the vehicle 

positioning at the lane level was implemented based on the 

Bayesian model using received signal strength (RSS) data 

used in all connected vehicle networks. The results showed 

that better measurement accuracy was achieved under the 

premise of reducing computational complexity in real time. 

Zhang, Hinz, Gulati, Clarke, and Knoll [9] developed a 

method for cooperative positioning of vehicle infrastructures 

based on the filter symmetric metric equation (SME) to solve 

the problem that large errors may occur even if there is 

uncertain or even missing associated data of observed vehicle 

targets in the vicinity of CV. Unknown associated 

measurement data can be converted into symmetric 

measurement equations to estimate the corresponding states, 

effectively solving data association problems in vehicle 

infrastructure scenarios. 

In summary,  existing  movement  state  tracking  methods 

mainly focus on autonomous vehicle positioning and 

collaborative positioning by roadside devices. In autonomous 

vehicle positioning, better filtering models are usually sought 

to achieve smaller tracking errors. Regarding collaborative 

positioning, the V2I collaborative positioning occupies an 

increasingly important position through the gradual 

application of CV, and the V2I collaborative positioning 

method compensates for the possible shortcomings in the 

perception of information from vehicle sensing. 

In addition, a substantial number of sensors onboard have 

been used to detect acceleration, braking, and steering events 

in moving vehicles. Daza, Bergasa, Bronte, Yebes, Almazán, 

and Arroyo [10] proposed a method to detect driver fatigue in 

real time, and input indices were based on the driver’s 

physiological state and driving behaviour. The sample data in 

the simulation environment were collected from advanced 

driver assistance systems (ADAS). The results confirmed that 

the driver fatigue detection index was within a narrow range 

of the established threshold. Bergasa, Almería, Almazán, 

Yebes, and Arroyo [11] designed an APP to monitor 

inappropriate driving behaviour. When sensor observations 

exceeded a preset threshold based on experience, they were 

input into a fuzzy set to assess whether the incidents were 

triggered. Ly, Martin, and Trivedi [12] used a conventional 

support vector machine (SVM) method to detect events 

related to vehicle movement behaviour. The optimal 

detection rate was 60 %, and the detection effect for 

acceleration events was lower than expected. Traditional 

methods to identify driving behaviour typically rely on 

information about vehicle movements, driver control 

changes, and psychological characteristics. However, given 

the rapid changes and complexity of road traffic, it is still 

difficult to identify dangerous driving behaviour efficiently 

and dynamically in real time. 

It should be noted that detecting and providing early 

warning of the risk of vehicle collisions is critical to avoiding 

traffic accidents. Previous methods for assessing collision 

risk are mainly based on the safety distance model. The 

longitudinal minimum safety distance (LMSD) has been 

widely used as a key index to determine the risk of 

longitudinal collision. Wu, Peng, Huang, Zhong, and Chu 

[13] found that the simple LMSD model performed poorly in 

terms of accuracy and adaptability, and developed a fuzzy 

inference-based LMSD model. Meyer [14] concluded that the 

degree of collision risk can be better measured by calculating 

the safety time based on the safety distance. Therefore, safe 

speed is also important. An algorithm to monitor the speed 

information of autonomous vehicles has advantages in speed 

monitoring accuracy and energy consumption [15]. The 

indices used to measure safety time included mainly time to 

collision (TTC), time to brake (TTB), time to react (TTR), 

and time to right of way (THW) [14], [16]–[18]. In addition, 

big data are involved in various fields, and it also plays an 

important role in cloud computing in vehicles [19]. To 

investigate the emergence of the intention of drivers intention 

to change lanes, Thiemann, Treiber, and Kesting [20] used 

the vehicle lane data provided by the Next Generation 

Simulation (NGSIM) Open Data to perform a comparative 

analysis. The safe distance model and the safe time model are 
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widely used in adaptive cruise control (ACC), advanced 

emergency braking system (AEBS), and other technologies. 

However, uncertainty in data perception is usually ignored in 

the risk assessment process [21]. To solve this problem, Kim, 

Kim, Lee, Ko, and Yi [22] used the energy function to derive 

the expected motion state of the vehicle and proposed the 

artificial potential field to evaluate the potential collision risk 

of the surrounding V2V. 

It is also popular to evaluate driving safety by calculating 

the probability of vehicle collisions. Toledo-Moreo and 

Zamora-Izquierdo [23] used multiple interactive models to 

construct the longitudinal and lateral motion of vehicles, and 

used different motion models to describe the motion states of 

vehicles. Valdés-Vela, Toledo-Moreo, Terroso-Sáenz, and 

Zamora-Izquierdo [24] proposed a vehicle collision 

avoidance system based on real-time vehicle behaviour 

detection using low-cost sensors and extracted behaviour 

rules from vehicle track data using a fuzzy logic model. Liu, 

Ozguner, and Ekici [25] also introduced the concept of 

vehicle-road cooperation in the development of a collision 

warning system.  

In general, research to determine the risk of vehicle 

collisions is relatively mature. To further reduce the 

probability of vehicle collisions, it is necessary to maintain 

high precision in predicting models risks in dynamic and 

uncertain traffic scenarios, and it is still a challenging 

problem to continuously achieve higher prediction time, 

especially in view of the goal of “zero accidents” in 

autonomous driving in the future. In addition, more research 

is needed on how to ensure good interaction with CV. 

III. PROPOSED METHOD 

A. Vehicle Motion State Acquisition Model 

Two basic vehicle motions, straight-ahead driving and 

turning, can be represented by the constant acceleration 

model (CA), the constant velocity model (CV), and the 

constant turning speed model (CT) [4], [13], [26], [27]. The 

interactive multi-model state-space equation describing the 

vehicle driving process is as follows 

 ( 1) ( ) ( ) ( )( ( ) ( )),i ix k k x k G k u k W k      (1) 

where 𝑥(𝑘) is vehicle motion state, 𝑢(𝑘) is the driver control, 

𝑊(𝑘) is the white Gaussian noise with zero mean and 

variance Q. In (1), i is the state space matrix corresponding to 

different dynamics models, e.g., i = 1 means that the 

advanced CA model is adopted, while i = 2 means that the CT 

model is adopted. In this study, the state matrices of CA 

model and CT model are denoted as ϕ1(𝑘) and ϕ2(𝑘) 
respectively, while the input matrices for CA and CT models 

are represented as  𝐺1(𝑘) and 𝐺2(𝑘). All of these matrices are 

parameterized at below: 
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here T is the sampling interval. Suppose that the observation 

vector at time k is Z(k), the RSU coordinate of the ith roadside 

intelligent station is ( , ),r r

i ix y  and the position of the tested 

vehicle is ( ( ), ( )).x k y k  The measurement noise during 

measurement is V(k), and its covariance is R, ( )i k  is the 

actual relative distance from the ith RSU to the vehicle, ( )i k  

is the angle between the RSU radar sensor (north is the 

positive direction) and the vehicle under test. Then the 

measurement formula is shown as follows 
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To calculate the error in the estimation of the motion state 

at each step, this study compares the estimated value of the 

algorithm with the true value. Furthermore, the calculation 

results presented in this section are the average of 50 Monte 

Carlo trials, and the root mean square error is used to estimate 

the deviation from vehicle motion state tracking to evaluate 

whether the combined positioning method of vehicle motion 

state based on V2I communication can accurately estimate 

and predict the motion state of the vehicle. The definition of 

the root mean square error is shown as follows 

 * 2 * 2

1

1
( ( ) ( )) ( ( ) ( )) .

n

i

RMSE x i x i y i y i
n 

     (7) 

To assess the tracking efficacy of the combined positioning 

method for vehicle motion state based on V2I outlined in this 

section, a comprehensive manoeuvring scenario was chosen 

from the real vehicle experiments conducted on the 

Nanchang-Jiujiang Intelligent Highways. Moreover, an 

enhanced Constant Acceleration (CA) model structure is 

utilized, integrating the driver's behavioral control input into 

the vehicle kinematic model. This stands in contrast to the 

conventional CA kinematic model employed for predicting 
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the vehicle's motion states, which often neglects to fully 

consider the impact of the driver's intent. Typically assumed 

to be zero in order to ensure smooth driving, the driver's 

control input is incorporated into the process noise during 

processing in traditional approaches. As a result, a certain 

level of discrepancy exists between the predicted results and 

the actual outcomes. The refined CA model structure, 

detailed explicitly by Wu [13], effectively boosts the 

accuracy of the vehicle motion state prediction model by 

incorporating the driver's behavioral control input into the car 

kinematic model. In this study, the model time step is set to 

1 s. The initial weight of each submodel was set as 0.5, and 

the transition probability matrix of the model was set as 

 
0.99 0.01

= .
0.01 0.99

ij
 
 
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 (8) 

In this work, we set 𝑋(𝑘) =
[𝑥(𝑘), 𝑦(𝑘), 𝑥̇(𝑘), 𝑦̇(𝑘), 𝑥̈(𝑘), 𝑦̈(𝑘)]𝑇, which obtained from 

the vehicle-mounted unit as the model input, and the 𝑍(𝑘) =
[𝜌(𝑘), 𝜃(𝑘)]𝑇, which obtained from the roadside unit as the 

observation quantity. As shown in Fig. 1, in the V2I 

environment of the vehicle network, the improved CA model, 

CT model, and the unscented Kalman filter (UKF)-based 

interacting multiple model (IMM) can be combined 

simultaneously with the two state variables. Furthermore, 

using the BSM driving state data collected in the real vehicle 

test, the trajectory accuracy of the proposed method on the 

expressway in the network environment is verified. 

 
Fig. 1.  Scenario of vehicle motion state collection based on V2I data fusion. 

B. Driver Behaviour Identification 

This study adopts the hybrid rough set and genetic 

algorithm (GA) to optimise the SVM to identify potentially 

dangerous driving states [28]. The following 11 variables will 

be selected as the initial input of this model: velocity 𝑣, 

velocity variation ∆𝑣, longitudinal velocity 𝑣𝑦, lateral 

velocity 𝑣𝑥, plane acceleration 𝑎, acceleration variation ∆𝑎, 

longitudinal acceleration 𝑎𝑦, lateral acceleration 𝑎𝑥, yaw 

angle ∆𝐵, vertical acceleration 𝑎𝑧, and 𝑎̇𝑧. Then, the rough 

set was applied to eliminate redundant features and select key 

features of control decisions on the premise of keeping the 

classification accuracy of original samples unchanged, thus 

simplifying samples and improving computational efficiency. 

Furthermore, the GA method is combined to find the best 

value of penalty factors 𝐶𝑆𝑉𝑀 and 𝛾 of SVM to identify the 

significant driver behaviour in the modelling process. The 

realisation process of the classification of potentially risky 

driving states is as follows. 

1. Data preprocessing: Training samples and test samples 

are normalised in the interval [0, 1], respectively, and the 

normalised mapping formula is as follows 

 min

max min

,
x x

y
x x





 (9) 

where , nx y R  and [0,1], 1,2,..., .y i n   

2. Sample division: The BSM driving data corresponding 

to each type of driving state are divided into two groups, 

namely training samples and test samples. 

3. Input feature selection: The rough set is used to process 

the selected training set, the variables that may have 

redundant properties are deleted, and the reduced attribute 

set is taken as the real input of the improved SVM. 

4. Use the GA algorithm to optimise the parameters of the 

training set, and find the parameter CSVM and   the best 

value. 

5. The obtained CSVM and   parameter SVM training 

model are used to predict and verify the test set. 

6. Use confusion matrix to visualise the classification 

effect and evaluate its classification performance. 

C. Vehicle Forward Collision Risk Early Warning Model 

Compared with other neural networks, long short-term 

memory (LSTM) can solve the problem of gradient 

disappearance or explosion and preserve the presequence 

memory well. In this paper, the LSTM model is used to 

predict vehicle acceleration after 0.5 s using the driving state 

series at continuous moments as a data set. It is assumed that 

there are three basic hidden features, namely, vehicle 

acceleration, speed, and relative distance with the vehicle in 

front. Therefore, the sequence of three-dimensional dynamic 

driving behaviour ( )lx t  at time t can be defined as follows 

 ( ) ( ( ), ( ), ( )) ,T

lx t d t v t a t  (10) 

where ( )a t  represents the acceleration of the vehicle at time 

t, ( )v t  represents the speed of the vehicle at time t, and ( )d t  

represents the relative distance between the vehicle under test 

and the vehicle ahead in the lane at time t. 

Define the input sequence ( )lX t  at time t 

 ( ) ( ( 4), ( 3), ( 2), ( 1), ( )).l l l l l lX t x t x t x t x t x t      (11) 

Define the real output sequence ( 5)lY t   of the time to be 

predicted at time t 

 ( 5) ( +5) ( ).l l lY t y t X t   (12) 

Finally, the prediction output at time t can be expressed as 

follows 

 ,LSTM
ˆ ( +5) ( (1), (2), ( )).l l l lY t F X X X t  (13) 

Thus, the inputs and outputs required to construct the 
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model are completed. In addition, the Adam optimisation 

method is used to optimise the training. Vehicle real-time 

deceleration can be obtained directly from the BSM data set, 

while TTC and THW can be obtained indirectly through the 

calculation of position information and speed information in 

the BSM data set. The calculation methods are shown in the 

following formula, respectively: 

 ,
h p

d
TTC

v v



 (14) 

 ,
h

d
THW

v
  (15) 

where d  is the relative distance between the front and rear 

cars, 
hv  is the current speed of the car, and 

pv  is the current 

speed of the car ahead. Since there is no universal standard of 

constant deceleration threshold for near-collision events [29], 

this section determines that the judgment criteria for potential 

collision risk at the moment are as follows: 

 The “abrupt braking” state perceived by the improved 

SVM driving state perception method; 

 THW is less than 0.5 s;  

 TTC is less than 5 s.  

A potential collision risk is considered if one of them is 

met. Furthermore, to facilitate subsequent data processing, 

the labels of events with potential collision risk were labelled 

as “1”, and those without potential collision risk were labelled 

as “0”, to build the real potential forward collision risk event 

database.  

Through the above model, the predicted value of 

acceleration 0.5 s after the current time can be obtained. The 

next step is to select the appropriate acceleration value as the 

classification standard for the potential risk of collision. The 

optimal threshold will be selected from the LSTM 

acceleration prediction results using the receiver operating 

characteristic (ROC) curve and Youden index. During the 

evaluation of LSTM prediction results by the ROC curve, the 

area under the curve (AUC) was used as the evaluation index 

of the model. Firstly, the samples can be divided into True 

Positive (TP), False Positive (FP), True Negative (TN) and 

False Negative (FN) according to their real category and the 

prediction category of the proposed model. Different sample 

accelerations were used as thresholds for calculation, and the 

corresponding true positive rate (TPR) and true negative rate 

(TNR) are successively taken as points on the coordinates to 

connect the ROC curve. The Youden index can be used to 

find the optimal critical value of the ROC curve [30], and can 

be used to find the acceleration threshold that can classify 

risks. Finally, the predicted value of the LSTM acceleration 

can be divided according to the potential risk threshold for 

collision. If it is below the threshold, it outputs the judgment 

“there is a risk of collision”, and if it is above the threshold, 

it outputs “safe”. 

IV. DATA PROCESSING 

A. Vehicle Motion Data Preprocessing 

From the 2329 sets of driving motion data collected, a 

scene with a large deviation of the autonomous vehicle 

positioning method is selected as an example. The data must 

be predicted for subsequent model verification. Processing is 

mainly divided into two steps: the preliminary correction of 

the trajectory and the coordinate change. Given the error in 

the trajectory data caused by some confounding factors in the 

acquisition of the OBU data, the RSU map data can be 

combined to make a preliminary correction. The GPS Lane 

deviation appears in the data sequence and the data does not 

change, but the tachograph shows that the vehicle moves 

smoothly and forward on the expressway between 14:39:52 

and 14:40:00. According to the actual type of road, 

(29.120715, 115.776571) are straight line segments. 

Therefore, you can use exponential smoothing to correct 

incorrect data, as shown in Table I. 

Since the vehicle BSM collected by GPS is latitude and 

longitude information, it is based on the WGS-84 geodetic 

coordinate system and must be converted to a plane 

rectangular coordinate system before it can be input into the 

proposed model. In this paper, the seven-parameter method 

for the South China Sea is used to convert the latitude and 

longitude, and you get the plane rectangular coordinate data 

as shown in Fig. 2.

TABLE I. MODIFIED TRACK COLLECTION INFORMATION. 

ID Time Longitude (°) Latitude (°) Corrected longitude (°) Corrected latitude (°) 

2080 2019/07/16 14:39:50 …29.118478 115.777417 29.118478 115.777417 

2081 2019/07/16 14:39:51 29.118665 115.777348 29.118665 115.777348 

 … … … … … 

2093 2019/07/16 14:40:03 29.120998 115.776473 29.120998 115.776473 

2094 2019/07/16 14:40:04 29.121198 115.776369 29.121198 115.776369 

 
Fig. 2.  Vehicle trajectory based on the plane Cartesian coordinate system.
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B. Vehicle Potential Risk Data Preprocessing 

During the driving process, drivers usually encounter 

driving scenes with potential risks, such as sudden 

acceleration or braking, lane change, and bump. Research on 

vehicle potential risk data is a multiclassification problem, 

and it is necessary to identify four driving states that can lead 

to risks during vehicle rapid acceleration, sudden braking, 

lane change, and bumpy driving 

1. For sudden acceleration behaviour, the time period of 

increasing speed within at least 2 s was found to be a 

reasonable sudden acceleration event, and the specific time 

before and after the increase of speed was greater than 

20 %, or the acceleration was greater than 2 m/s2; 

2. For sudden braking behaviour, the state of sharp 

deceleration is considered to be at least two consecutive 

moments before and after, and the vehicle speed reduction 

at the specific moments before and after is greater than 

20 %, or the deceleration is less than -3 m/s2; 

3. For lane change behaviour, the lane change event was 

recorded as a lane change event when the midpoint of the 

nose crossed the lane line and entered another lane. The 

Lane change moment was identified from all BSM data, 

and the data between the beginning and the end of lane 

change were used as input for the lane change event; 

4. For the phenomenon of vehicle bumps, combined with 

the real road conditions of the real vehicle experiment, the 

time is marked when the vehicle passes through the 

position with a large degree of fluctuation. 

By selecting 2329 groups of real-vehicle BSM data, 181 

groups of observed data were found to meet the 

discriminative conditions for the potential risk status of 

driving, and labelling categories were added to them, as 

shown in Table II. 

To facilitate subsequent processing, 11 condition variables 

such as ,v ,B v , ,xv ,yv `

za , ,a ,a ,xa ,ya ,za  etc. are, 

respectively, unified corresponding to the condition variable 

set C = {c1, c2 , …, c11}; the driving state output corresponds 

to the decision attribute d. The sample data of the driving 

status are shown in Table III. 

TABLE II. SAMPLE PROFILES OF POTENTIALLY DANGEROUS 

DRIVING BEHAVIOURS. 

Behaviour category Amount Label category (d) 

Sudden acceleration 87 1 

Sudden braking 15 2 

Lane change 35 3 

Bumps 44 4 

 

Of all samples, 80 % of the samples are used for training 

and the remaining 20 % of the samples are used for testing. 

Since there are differences in the number of different types of 

operational behaviour, each category is extracted and split in 

a ratio of 8:2. The specific split is shown in Fig. 3. 

 
Fig. 3.  Sample division. 

Since the 11 initially selected variables are continuous data 

of the motion state generated during the driving process, the 

units and value ranges are quite different. Using the method 

of clustering of K-means, the value of the state space is 

divided into five intervals from small to large, and the range 

of values is replaced by {0, 1, 2, 3, 4}. The output d is 

confined to the value range {1, 2, 3, 4} as indicated in Table 

II. Prior to reduction, the decision table for driving state 

information is derived from this range. Subsequently, the 

table undergoes rough set attribute reduction, leading to the 

identification and elimination of three redundant motion 

states, namely c3, c7, and c11. Therefore, the eight attributes 

obtained are determined as the final input of the following 

model. Furthermore, after finalising the input of the model, 

according to (9), the samples of the test set can be normalised 

and calculated, and the results are shown in Table IV. 

TABLE III. DRIVING STATE SAMPLE DATA. 

 Attributes 

ID c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 d 

1 0.00 0.04 96.36 0.07 95.36 1.25 0.27 -0.63 0.00 0.27 11.04 4 

… … … … … … … … … … … … … 

57 2.12 0.17 72.79 0.22 72.79 0.26 1.83 -0.08 0.003 1.82 10.05 1 

58 0.76 1.08 81.61 1.54 81.60 1.06 0.52 -0.18 0.01 0.52 10.85 4 

59 0.76 -2.66 82.62 -3.83 82.53 1.07 0.71 -0.09 -0.03 0.70 10.86 4 

… … … … … … … … … … … … … 

181 -3.89 2.38 14.4 0.60 14.39 0.26 -2.71 1.32 -0.07 -2.71 10.05 2 

TABLE IV. NORMALISATION RESULTS OF TEST SET SAMPLES AFTER FEATURE REDUCTION. 

Attributes 

ID c1 c2 c4 c5 c6 c8 c9 c10 

107 0.601 0.500 0.371 0.679 0.617 0.656 0.500 0.662 

108 0.441 0.498 0.344 0.867 0.382 0.431 0.508 0.434 

109 0.646 0.503 0.397 0.846 0.626 0.682 0.518 0.688 

… … … … … … … … … 

181 0.327 0.503 0.373 0.000 0.540 0.195 0.441 0.197 

.
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C. Vehicle Motion Data Extraction in Typical Scenes 

The test samples were also collected from real vehicles on 

the Nanchang-Jiujiang intelligent highways. The collection 

time was from 9:00 a.m. to 11:00 a.m. on July 16, 2019, and 

three sets of BSM data from real vehicles were selected in 

different time periods. To validate the model, the selected 

time period must include a data change between the three 

types of scenarios and cover as many collision risks as 

possible. The time, speed, acceleration, and position 

coordinates are all BSM base attribute data, and the relative 

distance from the vehicle ahead is calculated based on the 

BSM base data. The status of the driving scene is determined 

as defined in Section IV-B, where the scene of lane change is 

labelled “3”, the vehicle following scene is labelled “5”, and 

the free driving scene is labelled “6”. 

If there is no car in front of the tested vehicle, the relative 

distance to the vehicle in front is usually zero. To simplify 

data processing, it is assumed that there is a car 125 m in front 

of the free-running vehicle, and all relative distances that are 

zero values by default are replaced by 125 m in subsequent 

model processing. Table V shows the driving scenarios in 

some time periods containing the data of real vehicles 

changing from the pursuit state to the free-running state.

TABLE V. ACTUAL VEHICLE DATA IN SOME TIME PERIODS. 

ID Time (s) Speed (m/s) Acceleration (m/s2) D (m) Driving scenarios 

1 9:40:09.2 11.08862 0 58.36615 5 

… … … … … … 

479 9:40:57.1 18.29714 0.042672 51.24602 5 

480 9:40:57.2 18.2819 -0.27127 51.24298 5 

481 9:40:57.3 18.20266 -1.16129 - 6 

482 9:40:57.4 18.06245 -1.81661 - 6 

483 9:40:57.5 17.9131 -1.46304 - 6 

484 9:40:57.6 17.81556 -0.46634 - 6 

485 9:40:57.7 17.79422 0.240792 - 6 

V. DISCUSSION 

A. Vehicle Motion State Collection Results 

As can be seen in Figs. 4 and 5, speed and lane change 

events occurred in the data set during the period from 941 to 

954. The black dotted line marked “+” in Fig. 5 is the actual 

lane of the vehicle during the period 941 to 954 in the data set 

for a total of 14 s; the blue solid line with a five-pointed star 

is the position estimate of the autonomous vehicle positioning 

method; the red solid line with a diamond is the position 

estimate of the method proposed in this section. In addition, 

the bold dotted green line is the test road lane where the 

vehicle is located. The lower right line is lane 1 and the upper 

left line is lane 2. The vehicle travels from the lower left 

direction of the coordinate system in the figure to the upper 

right direction, as shown by the direction indicated by the 

purple arrow. In Fig. 4, the driver starts to slow down in the 

sixth second in the figure and steers the vehicle in the eighth 

second. In the following three seconds, the vehicle gradually 

changes from lane 1 to lane 2, accelerating to the 

neighbouring lane. The above working conditions are also 

entered into the model, and after 100 Monte Carlo 

calculations, the results are shown in Figs. 6 and 7. 

From Figs. 6 and 7, it can be seen that the lane change of 

the vehicle starts from the eighth second, the speed and 

position error of the comparative approach gradually become 

clear, the autonomous navigation and positioning of the 

vehicle behaviour have some hysteresis, and the V2I-based 

positioning method of the vehicle motion combination 

provides more accurate positioning due to its mature degree 

of real-time change of acceleration. 

To test the accuracy of the proposed method in reproducing 

the real driving condition, the difference between the 

transverse and longitudinal velocities according to the 

proposed method and the real value is tested. First, the 

Kolmogorov-Smirnov (K-S) test is performed to check 

whether the proposed method corresponds to the Gaussian 

distribution, and then the possibility test of the paired T-test 

is performed.

 
Fig. 4.  Speed and acceleration conditions. 
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Fig. 5.  Comparison of trajectory distribution. 

 
Fig. 6.  Comparison of velocity tracking. 

 
Fig. 7.  RMSE deviation of position. 

As shown in Table VI, the critical values of the K-S test for 

the four items are greater than 0.05, indicating that the 

random errors correspond to a Gaussian distribution. Second, 

for the T-test, all critical values are higher than the T-

statistics, indicating that the proposed method can better 

reflect the motion characteristics of the real vehicle. In 

summary, the method proposed in this paper achieves better 

results in vehicle track location compared to autonomous 

vehicle navigation and positioning. 

TABLE VI. ERROR TEST ANALYSIS. 

Inspection 

Lane change 

Lateral velocity 

difference (m/s) 

Longitudinal 

velocity difference 

(m/s) 

K-S statistics 0.121 0.14 

K-S test critical 

value 
0.391 0.169 

T-statistics 0.166 0.739 

T-test critical value 1.828 1.953 

B. Vehicle Potential Risk Determination Results 

The eight attributes are entered as the training set for the 

improved SVM and the CSVM parameters are optimised by 

GA. The CSVM penalty factor value range is [0, 100], the   

value range is [0, 100], the maximum GA iteration number is 

set to 200 generations, the maximum population number is 

set to 20, the crossover probability is set to 0.9, the mutation 

probability is set to 0.01, and the cross-validation parameter 

is set to 5. Figure 8 shows the parameter optimisation process. 

The combination of optimal parameters is CSVMbest = 

7.2313,   = 5.3225, and the cross-validation rate is 

93.7931 %, indicating that the training model has the best 

classification ability. 

At the same time, the two parameters are entered into the 

SVM for calculation and 69 support vectors are obtained. The 

number of support vectors corresponding to each type is 

shown in Table VII, and the coefficients of the SVM decision 

function are shown in Table VIII. 

TABLE VII. NUMBER OF SUPPORT VECTORS. 

Traffic status type Number of support vectors 

1 19 

2 16 

3 9 

4 25 
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TABLE VIII. SUPPORT VECTOR AND DECISION FUNCTION COEFFICIENT RESULTS. 

Support vector Coefficient Support vector Coefficient 

x1 0, 0, 0.0265 x2 0, 0, 1.9208 

x3 0, 0.9829, 0 x4 2.2326, 0, 1.0069 

… … … … 

x69 -2.6228, 0, -1.9766 - - 

 
Fig. 8.  Iteration of optimisation of the parameters of the genetic algorithm. 

Moreover, the improved rough set model, namely the 

variable precision rough set (VPRS), is selected as a 

comparison model. Compared to SVM, VPRS can be 

extracted from many unordered data without providing any 

prior information other than that required for the problem, 

making it an effective tool for uncertainty classification. 

Therefore, VPRS is selected as the comparative model for the 

GA-SVM model. The VPRS model is trained with the same 

training set and, finally, the test set is classified. To evaluate 

the multiple classification results more intuitively, the 

confusion matrix visualisation method is used. Each column 

represents the driving condition category predicted by SVM 

and each row represents the actual driving condition category. 

Compared with the superiority of the receiver operating 

characteristic curve (ROC) in binary classification problems, 

the confusion matrix can perform the visualisation and 

evaluation of multiclassification problems well. The 

prediction results of the two models are, respectively, input to 

the confusion matrix, and the results are shown in Fig. 9. 

 
Fig. 9.  Results of confusion matrix visualisation: (a) GA-SVM; (b) VPRS. 

As shown in Fig. 9(a), the overall representation of the GA-

SVM model is clearer and more intuitive. Of the samples 

originally labelled as the rapid acceleration state, 16 samples 

are correctly classified and one sample is incorrectly 

classified as the lane change state. Among the samples 

originally labelled as sudden braking condition, two samples 

are correctly classified and one sample is incorrectly 

classified as jerking; Among the samples originally labelled 

as lane change condition, one sample is correctly classified 

and one sample is incorrectly classified as lane change 

condition; Among the samples originally labelled as 

turbulence, all samples are correctly classified. In general, 34 

of the 36 samples are correctly classified and the overall 

classification accuracy is 94.44 %. In comparison, 31 of the 

36 samples in Fig. 9(b) are correctly classified, and the overall 

classification accuracy is 86.11 %. In summary, compared to 

the VPRS model, GA-SVM can efficiently and accurately 

identify potentially risky driving conditions from BSM data. 

C. Vehicle Collision Warning Judgment Results 

To assess the predictive effectiveness of the 

multidimensional LSTM neural network, the one-

dimensional LSTM model is used for comparison. 60 % of 

each set of samples is used for training, and the rest are used 

for testing. At the same time, the relevant model parameters 

are fixed. After the appropriate modification, the learning rate 

is 0.01, the number of iterations is 500, and the number of 

hidden neurons is 20. Unlike multidimensional LSTM, one-

dimensional LSTM takes only the vehicle acceleration 

sequence as a single variable as input, and the internal 

parameterisation of the model is the same as that of 

multidimensional LSTM. Finally, the acceleration is 

predicted after 0.5 s, as shown in Fig. 10. 

 
Fig. 10.  Comparison of the results of the model prediction. 

Figure 10 shows the results of the comparison. During this 

period, the general driving situation is relatively safe because 

the vehicle is in the following state most of the time. Between 

Group 50 and Group 160, e.g., the vehicle is generally in a 

state of intermittent acceleration, except for a brief braking 

near the Group 100 data. In general, the prediction results for 

the multidimensional LSTM and the one-dimensional LSTM 

are good in the steady state. However, a close examination of 

the data from groups 75 to 80, 105 to 110, and 140 to 150 

reveals a common phenomenon: when the driver quickly 
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releases the gas pedal after acceleration, there is no 

deceleration, and the one-dimensional LSTM would 

misjudge the more obvious deceleration behaviour. In 

contrast, the multidimensional LSTM is always closer to the 

real condition. The multivariable LSTM can predict the 

acceleration of driving well in advance. 

Training sets and test sets from three different time periods 

(different driving scenarios) are selected and combined, with 

a total of 779 training samples and 554 test samples. The 

analysis yields 668 groups of actual safety condition events 

and 111 groups of actual potential collision risk events in the 

training set. Thus, there are 668 groups of negative samples 

labelled “1” and 111 groups of positive samples labelled “0”. 

In the test set, there are 480 groups of actual safety state 

events and 74 groups of actual potential collision risk events, 

i.e., 480 groups of negative samples labelled “1” and 74 

groups of positive samples labelled “0”. Then, the thresholds 

are evaluated from small to large according to the predicted 

acceleration values of the multivariable LSTM and the single-

variable LSTM, and the ROC curve coordinates of TPR and 

TNR under each threshold are calculated. The results are 

shown in Table IX. 

TABLE IX. ROC CURVE COORDINATE RESULTS. 

Test result variable 
Greater than or equal to this value 

is positive 
TPR TNR 

Multidimensional LSTM 

-5.79154427 1.000 1.000 

-5.48007631 1.000 0.981 

… … … 

5.882681435 0.000 0.000 

Unidimensional LSTM 

-5.6685484 1.000 1.000 

-5.3578658 1.000 0.981 

… … … 

5.635484 0.000 0.000 

The ROC curve is shown in Fig. 11.  

 
Fig. 11.  Comparison of the results of the ROC curve model. 

The solid red line represents the predicted value of the 

multivariable LSTM and the dotted blue line represents the 

predicted value of the univariate LSTM. The AUC and 

standard error of the two were further calculated as shown in 

Table X. It is obvious that the AUC of the multivariable 

LSTM (0.968) is significantly larger than that of the 

univariate LSTM (0.947), indicating that the selection of the 

multivariable LSTM prediction model has better 

performance. 

Finally, the critical value of the ROC curve is determined 

by utilizing equation (10) to calculate the Youden index for 

each prediction generated by the multidimensional LSTM. 

The optimal value is then identified by selecting the threshold 

that corresponds to the maximum Youden index. When the 

acceleration threshold is configured at -1.8298, the Youden 

index attains its peak value of 0.786, marking the optimal 

critical state for the ROC. At this juncture, the false positive 

rate (FPR) stands at 0.949, while the false negative rate (FNR) 

is 0.163. Table XI illustrates the classification performance 

of the training set at this threshold. The overall accuracy for 

the training set achieves 93.332%, rising to 94.91% 

specifically in scenarios where the current driving condition 

is deemed safe. Notably, the accuracy in predicting potential 

collision risks within the training set reaches 83.784%. With 

the threshold set at -1.8298, the test set's actual data and 

predicted results are distinctly categorized. Therefore, this 

method can use BSM data to identify most potential collision 

risk events and give timely warnings of 0.5 s in advance.

TABLE X. AUC CALCULATION RESULTS. 

Test result variable AUC Standard error  
Progressive 

significance 

Asymptotically 95 % confidence interval 

Low limit Upper limit 

Multidimensional LSTM 0.968 0.014 0.000 0.940 0.997 

Unidimensional LSTM 0.947 0.019 0.000 0.909 0.985 

TABLE XI. TRAINING SET CLASSIFICATION VERIFICATION. 

Real category 
Prediction category 

Accuracy 
0 1 

0 634 34 94.910 % 

1 18 93 83.784 % 

Overall accuracy - - 93.332 % 

VI. CONCLUSIONS 

This study conducted field tests using real vehicles on an 

expressway. The aim was to meticulously select the basic 

safety message (BSM) data from various angles and execute 

effective fusion techniques with the objective of improving 

risk perception and early warnings. The study systematically 

addressed several challenges: estimating and optimising the 
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real-time motion state of the vehicle in conjunction with 

vehicle and road data, real-time identification of hazardous 

driving behaviours within the CV environment, and 

providing warnings regarding the risk of rear end collisions. 

In this investigation, an enhanced vehicle motion model, 

capable of reflecting the real-time control dynamics of the 

driver, was integrated with an interactive multimodal 

approach. This hybrid model introduced a novel positioning 

method to determine the state of the vehicle’s motion based 

on the vehicle-to-infrastructure (V2I) communication of CV. 

The BSM data set was streamlined using a coarse set, and the 

data were used as inputs for a support vector machine (SVM) 

model optimised by genetic algorithms (GA). The 

verification was carried out using 181 sets of real vehicle test 

data, revealing a model accuracy rate of 94.4 %, surpassing 

the comparison model VPRS, which achieved 86.11 %. The 

proposed method demonstrated its adaptability to dynamic 

driving scenarios in real vehicles and standard vehicle 

networking environments, thus enhancing real-time detection 

of potentially risky driving behaviours. 

For prototypical scenarios that present potential forward 

collision risks, three sets of multidimensional traffic 

condition data were selected at different time intervals as 

inputs for the long short-term memory (LSTM) model, 

predicting the acceleration value 0.5 s ahead. Leveraging real 

vehicle BSM data, the prediction accuracy of the proposed 

model was verified within a dynamic driving environment. 

The receiver operating characteristic (ROC) curve was used 

to compare the prediction results with the actual values, 

producing an area under the curve (AUC) value of 0.968 for 

the proposed model, outperforming the one-dimensional 

LSTM method, which scored 0.948. Furthermore, the ROC 

curve and the Youden index were utilised to identify -1.8298 

𝑚/𝑠2 as the optimal risk threshold for predicting the 

acceleration of time. Consequently, the proposed method 

could anticipate 87.838 % of possible collision risks in 

advance based on CV’s BSM data, thus facilitating timely 

warnings of collision risks. Future endeavours should 

emphasise intensifying real vehicle tests and expanding the 

pool of example data. This expansion would enable a more 

comprehensive exploration of complex driving scenarios 

such as overtaking, prolonged downhill drives, side slips, or 

rollovers. A wider spectrum of feature sets can be scrutinised 

to effectively identify, detect, or predict various driving 

events. 
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