Systematic Design of a Pseudodifferential VCO Using Monomial Fitting
DOI:
https://doi.org/10.5755/j02.eie.35279Keywords:
CMOS, Modeling, VCO, Time-based, OptimisationAbstract
Digital integrated electronics benefits from its higher abstraction level, allowing optimisation methods and automated workflows. However, analogue integrated circuit design is still predominantly done manually, leading to lengthy design cycles. This paper proposes a new systematic design approach for the sizing of analogue integrated circuits to address this issue. The method utilises a surrogate optimisation technique that approximates a simple monomial function based on few simulation results. These monomials are convex and can be optimised using a simple linear optimisation routine, resulting in a single global optimal solution. We show that monomial functions, in many cases, have an analytic relation to integrated circuits, making them well suited for the application. The method is demonstrated by designing a 14 MHz pseudodifferential voltage-controlled oscillator (VCO) with minimised current consumption and is manufactured in a 180 nm process. The measured total current matches the predicted and is lower than that for other similar state-of-the-art VCOs.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.