Analysis and Optimization of Coupled Windings in Magnetic Resonant Wireless Power Transfer Systems with Orthogonal Experiment Method
DOI:
https://doi.org/10.5755/j01.eie.23.6.19692Keywords:
Wireless power transfer, magnetic resonant, orthogonal experiments, magnetic coupling structure optimization.Abstract
The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and inductance for PCB windings at high- frequency. The method can reduce the design iterations and thereby can get more optimal design results. The experiments verified the design objective of kQ as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the kQ and the maximum efficiency are increased by about 12 % and 4 % respectively.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.