Estimating the State-of-Charge of all-Vanadium Redox Flow Battery using a Divided, Open-circuit Potentiometric Cell
DOI:
https://doi.org/10.5755/j01.eee.19.3.1623Keywords:
Energy storage, modeling, redox flow batteries, state-of-chargeAbstract
In this paper, mathematical modelling of oxidation-reduction redox potential for estimating the state-ofcharge of V-RFB is presented. The estimation is based on the Nernst equation, a mass balance, Faraday’s law of electrolysis, and 1st order kinetic equation. The 25-100 cm2 laboratories, unit cell V-RFB is chosen as a model reaction for electrolyte redox potential measurement. Preliminary experiment is carried out using a 100 cm2 laboratory unit but the estimated value produced is inaccurate. An alternative design of 25 cm2 laboratory, unit cell V-RFB using a divided, open-circuit potentiometric cell is used. The redox potential of V(III)/V(II) and V(IV)/V(V) is measured through combined Hg/Hg2SO4 reference electrode and carbon rod working electrode. The differences between the experimental and estimated values are highlighted.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.