Malware Propagation Modeling by the Means of Genetic Algorithms
Abstract
Existing malware propagation models mainly concentrate to forecasting the number of infected computers in the initial propagation phase. In this article we propose a genetic algorithm based model for estimating the propagation rates of known and perspective Internet worms after their propagation reaches the satiation phase. Estimation algorithm is based on the known worms’ propagation strategies with correlated propagation rates analysis and is presented as a decision tree, generated by GAtree v.2 application. Genetic algorithm approach for decision tree generation is selected taking into consideration the efficiency of this method while solving optimization and modeling tasks with large solution space. The performed tests have shown that the proposed model is efficient and can be used as a framework for modeling propagation rates after the satiation phase of different malware types. Ill. 5, bibl. 18 (in English; summaries in English, Russian and Lithuanian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.