Advanced Processing of Nonuniformly Sampled Non-Stationary Signals
Abstract
A signal is stationary if its statistical characteristics do not change with time. Signals of practical interest often do not comply with this requirement. Short time Fourier transform, time-frequency distribution and wavelet transform are the classical approaches used to analyze nonstationary signals. However they have limited applicability if the signal sampling density is below Nyquist. Time-frequency analysis typically deals with signals, where the instantaneous bandwidth is considerably narrower than the bandwidth of analysis. The paper proposes an enhancement of non-stationary signal processing, which is based on the adaptation of transformation functions to instantaneous spectrum. The main advantages of the proposed approach are increased resolution, suppressed side-loops and cross-terms and applicability to nonuniform sampling with a sampling density less than the Nyquist rate. Ill. 4, bibl. 11 (in English, summaries in Lithuanian, English, Russian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.