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Introduction

A signal is stationary if its statistical characteristics
do not change with time. Signals of practical interest often
do not comply with this requirement [1]. It has been quit
difficult to satisfactorily handle non-stationary signals
using conceptualizations based on stationarity, as it is
assumed, for example, by classical Fourier transform. Non-
stationary signals justify the need for joint time-frequency
analysis and representation.

Non-stationary signals may be divided into two types:
momentarily transient and persistent. The momentarily
transient signal has a brief, finite duration. The persistent
non-stationary signal has continuous time-varying
behavior. In practice the time-frequency representation is
characterized by points on a time-frequency gram with a
finite duration time axis and finite bandwidth frequency
axis.

Time-frequency analysis typically deals with signals
for which the instantaneous frequency bandwidth is
considerably narrower than the whole bandwidth of signal
spectral characteristics [2]. As examples can be quoted
chirps, Doppler signals, frequency tracking etc. To process
signals digitally they should be sampled. The Nyquist
criterion gives us a theoretical limit to what rate we have to
periodically sample a signal that contains data at a certain
maximum frequency. Once we sample below the Nyquist
rate we get the spectral analysis results, which have
corrupting artifacts — so called “aliases”. A dilemma
concerning the choice of sampling rate arises: on the one
hand the maximum signal frequency defines sampling
frequency according to Nyquist, while on the other hand
the narrow instantaneous bandwidth of signal at each time
moment allows a considerably lower sampling density.
One possible course of action in such a case is to use a
nonuniform sampling technique. The proper application of
nonuniform sampling suppresses the frequency aliasing
and allows the use of a sampling density below the Nyquist
rate [3].

It should be stated that nonuniformly taken signal
samples require the focusing of more attention on the
signal processing algorithm. The benefit achieved by
suppression of frequency aliasing could translate into some
other corrupting artifact, for example, the increased noise
floor of spectrogram as it is usually for the standard
spectral estimation algorithms. In this paper the advanced
signal processing method will be discussed, which will
provide high frequency and time resolution in a wide
dynamic range of analysis.
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Typical Time-frequency representations

The classical method for analyzing non-stationary
signals is short time Fourier transform (STFT). It was
proposed by Gabor in 1946. STFT is based on the well
known Fourier transformation
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From (1) follows that signal x(#) is integrated over

all time. It means that one does not need to worry about
time after transformation is applied. There is no attention
to when the signal components of different frequencies act.
The basic idea of STFT is to introduce the time window,
which is moved along the signal, and in such a way time
indexed spectrum can be calculated:

STFT(t,) = [x(1)g(z —t)exp(—jwr)dr.  (2)

It is obvious from (2) that the time-frequency analysis
result depends on time window g(¢) choice. Long time

windows provide good frequency resolution, but poor time
resolution. Short time windows provide good time
resolution, but poor frequency resolution [4]. STFT for
signals sampled nonuniformly at time instants #; can be

expressed as:

STFT(r,@)= X x(1;)g(ty —7)exp(—jaty), (3)
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where summation involves the samples located within the
selected time window with length 7', . The basic drawback

of STFT is its resolution limitation. It can be improved
replacing Fourier transform with high-resolution spectral
estimate techniques, for example, autoregressive (AR)
modeling [1, 5].

The Wigner distribution (WD) has been employed as
an alternative to overcome resolution drawback of the
STFT [4]. WD in general is expressed as

Wt ) = [ x(t+7/2)x" (1 —1/2) exp(~jwr)dzr . (4)

WD provides high-resolution representation in time and in
frequency for monocomponent signals. However, if the
signal consists of several subcomponents, additional
interference or cross-terms appears [4, 6].

A discrete form of the WD can be expressed as

WD(r, ) =2 ix(r-i—tk )x" (z—1; ) exp(—j2at;) . (5)
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Note the necessity to know signal values at time instants
7+t¢; and 7—t; forall £ that leads to the WD application

only for uniformly sampled signals. Moreover, to avoid the
distortion due to frequency aliasing, the signal x(f) has to

be sampled at twice the Nyquist frequency for real valued
signal.

To overcome the disadvantages of the cross-terms of
the Wigner distribution and the resolution limitations of
the STFT, the wavelet transform (WT) is an alternative [7].
The continuous wavelet transform of a signal x(¢) is

defined as
WT () = = [ x()h" (T—_tjdz' 6)
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where a is the scaling factor and #(¢)is the so-called

analyzing wavelet. The time-frequency version is obtained
by making the substitution a = f;,/f . The analysis can be

viewed as a filter bank comprising bandpass filters with
bandwidths proportional to frequency. The multiresolution
nature of wavelet analysis leads to some limitations.
Wavelet transform techniques use a scaling profile such
that frequency resolution decreases at high frequencies,
while temporal resolution decreases at low frequencies.
While this choice of scaling leads to nice mathematical
structures and algorithms, there is no physical reason to
assume that, it is contrary to natural structure behavior. In
addition, the time- and scale-sampling grid should usually
be considerably oversampled, in order to get the best
performance of WT analysis. This oversampling introduces
redundancy in the time-scale representation.

Proposed time-frequency analysis approach

The approach developed in this paper is based on the
idea of keeping the valuable features of the above
mentioned classical approaches and to minimize the impact
of its drawbacks. Several authors consider a promising
advancement of Wigner distribution, which allows the
suppression of cross-terms and the improvement of
resolution. The basic idea is to obtain a signal dependent
kernel instead of simple kernel selection without any
reference to signal features [8]. The approach featured here
is based on a signal dependent transformation [9], which is
used instead of windowed exponential functions in the
expression (3) for discrete STFT. In the general form the
proposed transformation could be expressed as

Sro)=  Yx)s) (), ()
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where {rg) (a))} is a set of transformation functions for

time moment of analysis 7. 7, is assumed as time

interval of signal’s quasi-stationarity. From (7) it follows
that the proposed transformation is applicable to arbitrarily
distributed signal samples. The signal dependent
transformation functions set is chosen in such a way that
the nature of time-frequency representation corresponds to
the nature of short time Fourier transform. In this case it is
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possible to reconstruct the signal from its time-frequency
representation by inverse STFT.

The construction of {xl(:) (w)} is based on Minimum

Variance (MV) filter idea to minimize variance of the
selective filter output [5, 10]. The frequency response of
such a filter adapts to the input signal on each frequency of

interest. The variance of the output is p = s Rs, where s
is vector of filter coefficients and R is signal
autocorrelation matrix. To guarantee that sinusoid with
frequency @ passes through the filter designed for this

frequency without distortion the following condition have
to be considered

e (wy)s=1, (8)

where e;(wg)=exp(jwyt;). The coefficients s under
condition (8) can be calculated as
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To obtain the whole time-frequency representation of
the signal the calculation of coefficient vector (9) should
be performed for each grid point (@, 7) of time-frequency

representation.
Simulation results

The performance of the proposed signal dependent
time-frequency transformation has been compared with
classical approaches. The 256 uniformly distributed
(sampling period T =1) samples of test-signal have been
used. The test-signal consists of two components: one is a
rising chirp, which rises from middle frequency
(normalized frequency - 0.3) to high frequency
(normalized frequency - 0.45) and the second is a
frequency modulated signal in low frequency region (sin
modulation with period 1287 , central frequency 0.125 and
modulation range from 0.05 to 0.2 of normalized
frequency):

x, =exp(j27(0.3+(0.15/256)n)n) +

+exp(j27(0.125+0.075sin(27 n/128))n) . (10)

The trace of frequencies changes of test-signal along a time
axis is shown in Fig.1.
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Fig. 1. Frequencies “trace” of test-signal
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Fig. 2. Time-frequency representations of test signal: (a) — STFT, (b) — Wigner distribution, (c) — Wavelet analysis, (d) — suggested

signal dependent transformation

The time-frequency representations obtained by the
proposed and three “classical” approaches are
demonstrated in Fig.2. For STFT analysis a Hamming
window with length of 81 samples is used. STFT (Fig.2a)
clearly identifies both subcomponents of test-signal, but
with low resolution. The pseudo (frequency smoothing
Hamming window is used) Wigner distribution provides
good resolution (Fig.2b), but significant cross-term appears
in time-frequency representation additionally to the true
test-signal components. The Fig.2c illustrates the limited
temporal resolution of wavelet transform at low
frequencies and limited frequency resolution at high
frequencies. The frequency axis in Fig.2¢ is not linear due
to multiresolution nature of WT.

The time-frequency representation obtained by
suggested approach is shown in Fig.2d. It demonstrates
high temporal and frequency resolution without cross-
terms. The used algorithm assumes the a priori knowledge
of signal autocorrelation nature. In practice there is a
possible case when some information about the signal
autocorrelation characteristics is known, and a case when
only signal samples are known. In the second case the
obtaining of transformation functions can be managed by
the iterative update of local autocorrelation matrix values.
A procedure similar to the one which is described in
literature [10, 11] can be exploited. The time-frequency
representation obtained in such an iterative way is shown
in Fig.3.
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Fig. 3. Time-frequency representation obtained by suggested
approach with iterative updating of signal autocorrelation

The beneficial features of the proposed method are
kept.

Discussion

The main advantage of the proposed approach is the
increased resolution in comparison with STFT. It is
achieved by making the transformation kernel dependent
on the instantaneous spectral characteristics of the signal.
The developed analysis method has no problems with side-
loops and cross-terms. Simulation results have shown that



the proposed method provides narrow frequency peaks,
permitting more precise frequency identification enhancing
the ability to determine frequency changes at any time
instant. The proposed method preserves the relative
amplitudes of multicomponent signals thereby overcoming
drawback of autoregressive model based methods [5].

The proposed time-frequency algorithm is developed
for application to arbitrarily distributed signal samples.
The benefit gained from that feature is the possibility to
use sampling point flows with mean rate considerably
below Nyquist. The Fig.4 illustrates the time-frequency
representation of test-signal in the case when only 64
samples (one fourth of 256 samples used in Fig.2 is left in
random way) are used for processing. The analysis is done
on the same grid as in Fig.2. The shortage of samples
influences the magnitudes of frequency peaks, while the
resolution of representation and ability to determine
precise frequency tracking remain.
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Signalas yra stacionarus, jeigu jo statistinés charakteristikos nekinta laike. Signalai naudojami praktiniams tikslams daznai netenkina
Sio reikalavimo. Trumpalaiké Furje transformacija, laikinis-dazninis pasiskirstymas ir banginé transformacija — tai klasikiniai buidai
naudojami nestacionariy signaly analizei. Taciau jie turi ribotas pritaikymo galimybes, jei signalo diskretizavimo tankis yra mazesnis nei
Naikvisto kriterijus. Laikiné-dazniné analizé paprastai tinka tiem siganlams, kuriy momentinis juostos plotis yra gerokai mazesnis uz
analizuojama juostos ploti. Siiilomas nestacionariy signaly apdorojimo pagerinimo buidas, kuris pagristas transformacijos funkciju
adaptacija momentiniam spektrui. Pagrindiniai $io metodo privalumai yra padidéjusi skiriamoji geba ir kintancio dikretizavimo
panaudijimas, kai diskretizavimo tankis mazesnis uz Naikvisto kriterijy. Il. 4, bibl. 11 (angly kalba, santraukos lietuviy, angly ir rusu k.).
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A signal is stationary if its statistical characteristics do not change with time. Signals of practical interest often do not comply with
this requirement. Short time Fourier transform, time-frequency distribution and wavelet transform are the classical approaches used to
analyze nonstationary signals. However they have limited applicability if the signal sampling density is below Nyquist. Time-frequency
analysis typically deals with signals, where the instantaneous bandwidth is considerably narrower than the bandwidth of analysis. The
paper proposes an enhancement of non-stationary signal processing, which is based on the adaptation of transformation functions to
instantaneous spectrum. The main advantages of the proposed approach are increased resolution, suppressed side-loops and cross-terms
and applicability to nonuniform sampling with a sampling density less than the Nyquist rate. Ill. 4, bibl. 11 (in English, summaries in
Lithuanian, English, Russian).
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JIyist HecTalMOHAPHBIX CHTHAJIOB I10JIOCA MOMEHTHOTO CIIEKTPa YacTO 3HAYMTEIBHO Y)Ke, YeM I10J0ca aHaiuu3a. TpaJuluoHHO IS
aHaJIM3a TaKUX CHIHAJIOB MCIIONB3YIOT JIOKalIbHOE IpeodOpa3oBaHue (Dypbe, BPEeMEHHOE-4aCTOTHOE pacrpeneieHue M BeiiBier
npeoOpa3oBaHue, HO MX BO3MOXHOCTH OIPaHHYCHBI KOT/la 4YaCTOTa JUCKPETH3AlMK CUTHANA MeHblie kputepus Haiiksucra. IIpenoxex
HOJIXOA YJydIleH!s oOpabOTKM HECTallMOHAPHBIX CHI'HAJIOB, OCHOBAHHBIM Ha ajantauuu (QYHKLIHM TpaHCHOPMALUMH K MOMEHTHOMY
cnektpy. M. 4, 6ubn. 11 (Ha aHTIHICKOM sI3bIKE; pedepaThl Ha TUTOBCKOM, aHTTTUICKOM U PYCCKOM 53.).
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