Passenger Flow Detection of Video Surveillance: A Case Study of High-Speed Railway Transport Hub in China
DOI:
https://doi.org/10.5755/j01.eee.21.1.9805Keywords:
Image analysis, image recognition, background model, passenger flow status, high-speed railway transport hub.Abstract
Detect moving object from a video sequence is a fundamental and critical task in many computer vision applications. With video surveillance system of high-speed railway transport hub, one of the aims for passenger flow detection is to accurately and promptly detect potential safety hazard hidden in passenger flow. In this paper, a procedure of passenger flow detection in high-speed railway transport hub is presented. According to the key steps of procedure, a modified background model based on Dempster-Shafer theory, and a passenger flow status recognition algorithm based on features of image connected domain are proposed to improve the accuracy and real-time performance of passenger flow detection. Credit and effects of proposed methods were proved by experiment on data from high-speed railway transport hub video surveillance system.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.