Lossless Compression of Vibration Signals on an Embedded Device Using a TDE Based Predictor
DOI:
https://doi.org/10.5755/j01.eie.22.2.7646Keywords:
Autocorrelation, Huffman coding, vibration measurement, wireless sensor network.Abstract
A lossless compression scheme for the data acquired from three-axial microelectromechanical (MEMS) accelerometer is presented. Time delay estimation (TDE) was applied in conjunction with differential pulse code modulation (DPCM) as the preprocessor to entropy coding, to perform lossless compression on an embedded sensor device with limited memory and speed in real time. The essence of this method is to check if the signal exhibits certain level of periodicity, and code the differences between samples one signal period apart if it does. Limited choice of feasible mathematical operations was an important constraint implied by the architecture of the embedded sensor device. Algorithm execution time was improved by programming in assembler and avoiding unnecessary operations. Experiments have confirmed that considerable compression ratio gains can be achieved if the signal is quasiperiodic.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal the right of the first publication with the paper simultaneously licensed under the Creative Commons Attribution 4.0 (CC BY 4.0) licence.
Authors are allowed to enter into separate, additional contractual arrangements for the non-exclusive distribution of the paper published in the journal with an acknowledgement of the initial publication in the journal.
Copyright terms are indicated in the Republic of Lithuania Law on Copyright and Related Rights, Articles 4-37.