Position Control for Automatic Assembly Equipment Using a New Hybrid Fuzzy Controller
DOI:
https://doi.org/10.5755/j02.eie.37166Keywords:
Automatic assembly equipment, Fuzzy control, Position controlAbstract
Automatic assembly equipment is the key to improving the efficiency and quality of workpiece assembly. The precision of assembly directly influences the overall quality of the assembled product. To optimise the position control accuracy in the automatic assembly equipment, a variable universe fuzzy proportional integral (VUFPI) controller optimised by the sparrow search algorithm (SSA) is developed in this paper. The developed controller adopts the SSA to adjust in real time the universe of the fuzzy controller according to the deviation of the servo system. The servo system model is established to evaluate the performance of the proposed SSA-VUFPI controller; furthermore, the SSA-VUFPI controller is implemented in the automatic assembly equipment for experimental evaluation. The analysis results demonstrate that the proposed SSA-VUFPI controller is capable of improving the anti-interference ability and position accuracy of the servo system compared to traditional PI, VUFPI, and currently used back propagation neural network proportional-integral-derivative (BP-PID), fractional-order PID (FOPID), and SSA-PID controllers. Moreover, it effectively improves the position accuracy of the workpiece and ultimately improves the quality of the assembly.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Funding data
-
National Natural Science Foundation of China
Grant numbers 51975568