Optimising Damping Control in Renewable Energy Systems through Reinforcement Learning within Wide-Area Measurement Frameworks
DOI:
https://doi.org/10.5755/j02.eie.36385Keywords:
Reinforcement learning, Wide-area measurement systems, Deep deterministic policy gradient (DDPG), Solar plant, Inter-area oscillationsAbstract
This paper introduces a reinforcement learning-based controller, utilising the deep deterministic policy gradient (DDPG) method, to mitigate low-frequency disturbances in electrical grids with renewable energy sources. It features a novel reward function inversely related to the control error and employs a state vector comprising absolute and integral errors to enhance error reduction. The controller, tested on a dual-region system with solar power, utilises phasor measurement unit (PMU) data for global inputs. Its performance is validated through time-domain simulations, pole-zero mapping, modal analysis, frequency response, and participation factor mapping, using a custom MATLAB and Simulink toolkit. The design accounts for communication delays and adapts to variable conditions, which proves to be effective in reducing oscillations and improving system stability.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.