New Face Recognition System Based on DCT Pyramid and Backpropagation Neural Network
DOI:
https://doi.org/10.5755/j02.eie.35897Keywords:
Artificial neural networks, Discrete cosine transforms, Face recognition, Feature extraction, Statistical learningAbstract
Face recognition has emerged as a prominent biometric identification technique with applications ranging from security to human-computer interaction. This paper proposes a new face recognition system by appropriately combining techniques for improved accuracy. Specifically, it incorporates a discrete cosine transform (DCT) pyramid for feature extraction, statistical measures for dimensionality reduction of the features, and a two-layer backpropagation neural network for classification. The DCT pyramid is used to effectively capture both low- and high-frequency information from face images to improve the ability of the system to recognise faces accurately. Meanwhile, the introduction of statistical measures for dimensionality reduction helps in decreasing the computational complexity and provides better discrimination, leading to more efficient processing. Moreover, the two-layer neural network introduced, which plays a vital role in efficiently handling complex patterns, further enhances the recognition capabilities of the system. As a result of these advancements, the system achieves an outstanding 99 % recognition rate on the Olivetti Research Laboratory (ORL) data set, 98.88 % on YALE, and 99.16 % on AR. This performance demonstrates the robustness and potential of the proposed system for real-world applications in face recognition.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.