Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
DOI:
https://doi.org/10.5755/j02.eie.34722Keywords:
Doubly-fed induction generator, Hysteresis current control, Predictive current control, Wind energy conversion system, 3L-NPCAbstract
In this paper, we present a novel design and development of wind energy conversion systems (WECS) for a doubly-fed induction generator (DFIG). A hysteresis current control is used to improve the DC bus for rectifier and smart current control by model predictive of three-level-NPC (3L-NPC) inverter. The advantages of this intelligent method are such as fast dynamic answers and the easy implementation of nonlinearities, and that it requires fewer calculations to choose the best switching state. In addition, an innovative algorithm is proposed to adjust the current ripples and output voltage harmonics of the wind energy conversion system. The performance of the system was analysed by simulation using MATLAB/Simulink.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.