Transition-Relevance Places Machine Learning-Based Detection in Dialogue Interactions
DOI:
https://doi.org/10.5755/j02.eie.33853Keywords:
Conversation analysis, Dialogue initiative, Transition-relevance places, Prosodic features, ClassificationAbstract
A transition-relevance place (TRP) represents a place in a conversation where a change of speaker can occur. The appearance and use of these points in the dialogue ensures a correct and smooth alternation between the speakers. In the presented article, we focused on the study of prosodic speech parameters in the Slovak language, and we tried to experimentally verify the potential of these parameters to detect TRP. To study turn-taking issues in dyadic conversations, the Slovak dialogue corpus was collected and annotated. TRP places were identified by the human annotator in the manual labelling process. The data were then divided into chunks that reflect the length of the interpausal dialogue units and the prosodic features were computed. In the Matlab environment, we compared different types of classifiers based on machine learning in the role of an automatic TRP detector based on pitch and intensity parameters. The achieved results indicate that prosodic parameters can be useful in detecting TRP after splitting the dialogue into interpausal units. The designed approach can serve as a tool for automatic conversational analysis or can be used to label large databases for training predictive models, which can help machines to enhance human-machine spoken dialogue applications.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Funding data
-
Agentúra na Podporu Výskumu a Vývoja
Grant numbers APVV SK-TW-21-0002, APVV-15-0517