Robust Non-Linear Controller Design for DC-DC Buck Converter via Modified Back-Stepping Methodology
DOI:
https://doi.org/10.5755/j02.eie.31487Keywords:
DC-DC converter, Modified back-stepping control, Adaptive modified back-stepping control, RobustnessAbstract
This paper introduces two improved control algorithms for DC-DC converters. The first one is called “Non-Adaptive Modified Back-Stepping Control” (M-BSC) and the second one is called “Adaptive Modified Back-Stepping Control” (AM-BSC). Both the proposed control schemes allow one to increase the robustness to load and input voltage variations and make the DC-DC converter less sensitive to disturbances concerning the control algorithms available in the literature. The control aims to keep the output voltage at the desired value despite any changes that may occur during its operation. As a case study, the proposed control techniques have been applied to a DC-DC Buck converter. To validate the theoretical results and evaluate the performance of the proposed control algorithms, numerical simulations with four different scenarios have been analyzed: nominal operating conditions, load variations, output voltage tracking, and input voltage variations. The simulation results highlight the good performance of the proposed control algorithms compared to other classical algorithms, improving both the stationary error and the response time.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.