Mathematical Analysis and Design of a Novel 5-DOF 3D Printer Robotic System
DOI:
https://doi.org/10.5755/j02.eie.31383Keywords:
Additive manufacturing, Parallel manipulator, Kinematics, WorkspaceAbstract
In this study, the mathematical analysis and design of a new 3D printer with 5 degrees of freedom were carried out. Thanks to the developed system, a new concept has been brought to the multi-axis 3D printer mechanisms, and thus, it is aimed to improve the part quality in additive manufacturing (AM) processes. As a result of adding the 4th and 5th axes to the moving platform of the system, the production time of the part was accelerated. It is also possible to print more complex and curved shapes with less support. To design a system with these features, first of all, the kinematic analysis of the system was obtained using vector algebra, and the workspace of the current printer was determined by considering the system constraints in this article. By giving detailed information about the mechanical and electrical components of the designed system, the working principle of the whole system is presented. According to the findings obtained in the studies, the kinematic analyses performed for the proposed system proved to be correct and a new system was proposed especially for additive manufacturing technologies.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Funding data
-
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Grant numbers 119N707