A Novel Metaheuristic Optimization for Throughput Maximization in Energy Harvesting Cognitive Radio Network

Authors

DOI:

https://doi.org/10.5755/j02.eie.31245

Keywords:

Cognitive radio, Energy harvesting, Metaheuristic optimization, MOALO, Spectrum sensing

Abstract

In this article, a novel technique is proposed, namely rank-based multi-objective antlion optimization (RMOALO), and applied to optimize the performance of the energy harvesting cognitive radio network (EHCRN). The original selection method in multi-objective antlion optimizer (MOALO) is suitably changed to improve the algorithm, thus reaching the optimal solution for the problem. The proposed technique shows considerable performance improvement over the method used in the multi-objective antlion optimizer (MOALO). The performance of the proposed RMOALO is demonstrated on five benchmark mathematical functions and compared to multi-objective particle swarm optimization (MOPSO), multi-objective moth flame optimization (MOMFO), MOALO-Tournament, and MOALO-Roulette. The simulation results show an improved convergence of RMOALO and find the optimal solution to the throughput maximization problem. We show that RMOALO provides 16.33 % improved average throughput with the optimal value of sensing duration for the varying amount of harvested energy compared to MOPSO, MOMFO, MOALO-Roulette, and MOALO-Tournament.

Downloads

Published

2022-06-28

How to Cite

Bakshi, S., Sharma, S., & Khanna, R. (2022). A Novel Metaheuristic Optimization for Throughput Maximization in Energy Harvesting Cognitive Radio Network. Elektronika Ir Elektrotechnika, 28(3), 78-89. https://doi.org/10.5755/j02.eie.31245

Issue

Section

TELECOMMUNICATIONS ENGINEERING