A Novel Metaheuristic Optimization for Throughput Maximization in Energy Harvesting Cognitive Radio Network
DOI:
https://doi.org/10.5755/j02.eie.31245Keywords:
Cognitive radio, Energy harvesting, Metaheuristic optimization, MOALO, Spectrum sensingAbstract
In this article, a novel technique is proposed, namely rank-based multi-objective antlion optimization (RMOALO), and applied to optimize the performance of the energy harvesting cognitive radio network (EHCRN). The original selection method in multi-objective antlion optimizer (MOALO) is suitably changed to improve the algorithm, thus reaching the optimal solution for the problem. The proposed technique shows considerable performance improvement over the method used in the multi-objective antlion optimizer (MOALO). The performance of the proposed RMOALO is demonstrated on five benchmark mathematical functions and compared to multi-objective particle swarm optimization (MOPSO), multi-objective moth flame optimization (MOMFO), MOALO-Tournament, and MOALO-Roulette. The simulation results show an improved convergence of RMOALO and find the optimal solution to the throughput maximization problem. We show that RMOALO provides 16.33 % improved average throughput with the optimal value of sensing duration for the varying amount of harvested energy compared to MOPSO, MOMFO, MOALO-Roulette, and MOALO-Tournament.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.