Vehicle Make Detection Using the Transfer Learning Approach
DOI:
https://doi.org/10.5755/j02.eie.31046Keywords:
Image classification, Machine learning, Vehicle detectionAbstract
Vehicle detection and classification is an important part of an intelligent transportation surveillance system. Although car detection is a trivial task for deep learning models, studies have shown that when vehicles are visible from different angles, more research is relevant for brand classification. Furthermore, each year, more than 30 new car models are released to the United States market alone, implying that the model needs to be updated with new classes, and the task becomes more complex over time. As a result, a transfer learning approach has been investigated that allows the retraining of a model with a small amount of data. This study proposes an efficient solution to develop an updatable local vehicle brand monitoring system. The proposed framework includes the dataset preparation, object detection, and a view-independent make classification model that has been tested using two efficient deep learning architectures, EfficientNetV2 and MobileNetV2. The model was trained on the dominant car brands in Lithuania and achieved 81.39 % accuracy in classifying 19 classes, using 400 to 500 images per class.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.