Development of Georeferenced 3D Point Cloud in GPS Denied Environments Using Backpack Laser Scanning System
DOI:
https://doi.org/10.5755/j02.eie.29063Keywords:
Simultaneous localization and mapping, Sensor fusion, 3D point cloud, 2D laser scanner, GPSAbstract
This paper presents a method to generate a Georeferenced 3D point cloud of GPS denied built structures using custom made backpack laser scanning system. An orthogonal combination of 2D Hokuyo laser scanners has been used on the backpack system to generate a 3D point cloud of the surveyed environments. The data logging of scanners and simultaneous localization and mapping (SLAM) of the scanning system have been carried out using Robot Operating System (ROS). The developed local SLAM based 3D point cloud solution has been transformed into global Georeferenced 3D point cloud using observed geographic coordinates of nearby GPS visible vicinities. Multiple indoor environments have been scanned and 3D point clouds have been developed which have been found accurate when compared to the ground truth. In comparison to available surveying solutions present in the local market, the developed system has been found more accurate, faster, and user friendly to generate structural results of the surveyed vicinities in detail. The efficacy of the system has been witnessed by local surveying companies by delivering the unique global coordinated solutions on affordable rates.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.
Funding data
-
Higher Education Commision, Pakistan
Grant numbers TDF-02-057