Redundant and Flexible Pseudorandom Optical Rotary Encoder
DOI:
https://doi.org/10.5755/j01.eie.26.6.25476Keywords:
Encoding, Position measurement, Pseudorandom sequences, Absolute encoderAbstract
Optical encoders are mainly used in modern motion servo systems for high-resolution and reliable position and velocity feedback. Pseudorandom optical rotary encoders are single-track and use a serial pseudorandom binary code to measure absolute position. The realization and analysis of such a rotary encoder with advanced code scanning and error detection techniques, as well as an improved redundancy in operation, are presented. A presented serial code reading solution uses two phase-shifted code tracks and two optical encoder modules. So, the realized encoder, hybrid in nature, provides “output on demand” and more or less reliable position information using very efficient error checking. Compared to a standard absolute encoder, this encoder requires a smaller code disc, facilitates installation, has greater flexibility in operation, and is less sensitive to external influences.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.