Incorporation of Neural Network to HPMHT for Tracking Multiple Targets
DOI:
https://doi.org/10.5755/j01.eee.21.4.12772Abstract
In this paper, a hybrid method which combines homothetic multi-hypothesis tracker (HPMHT) and artificial neural networks (ANNs) is presented to solve multiple target tracking problem. The performances of the proposed neural network aided homothetic multi-hypothesis tracker (NNAHPMHT) and the HPMHT are compared for two different test scenarios. It was observed that the estimation performances obtained from the NNAHPMHT are better than those obtained from only the HPMHT. The NNAHPMHT method doesn’t require additional complex modeling for tracking multiple targets. The additional implementation time originated from NNAHPMHT is only recall time of the ANN. For this reason, the proposed method is very suitable for real-time implementation.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.