Adequacy of Mathematical and Physical Model of Oscillating Mechatronic Device
Abstract
Mostly used mechatronic devices are electrical energy converters into mechanical energy. Because of this reason it is very important to research them. One of the research types are mathematical mechatronic drive models. The research of drive was concluded using three methods: performing a physical experiment, performing a mathematical model, electromagnetic force, winding‘s inductivity solutions by calculating (2), (3), (4) dependence and performing mathematical model when the values are approximate from previously calculated dependency surfaces. The voltage of the energy source that was feeding the drive was changed and monitoring of motor moving part’s oscillating amplitude and force in the circuit. During the mathematical model, using finite elements method, the results are closer to the physical model than mathematical model, when electromagnetic force is calculated taking the first degree of the order function. Because of that reason mathematical model, using finite elements method is acceptable. It is worth to explore finite elements method usage in mathematical model. Ill. 8, bibl. 5 (in English; summaries in English, Russian and Lithuanian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.