Comparative Control of a Nonlinear First Order Velocity System by a
Abstract
Neural Networks, due to their approximation capabilities of Multilayer Perceptron (MLP) are promising to become a popular tool for modeling nonlinear systems and implementing general – purpose nonlinear controllers. One of them, for prediction and control, is the NARMA–L2 (or Feedback Linearization) controller. In this work its capabilities are tested, in a first order velocity control system, and compared with classic PID control. The comparison between system responses, clearly showed that NARMA-L2 controller gives the best control results for both kind of inputs (step or ramp), hereby minimising the steady state final errors of response and, at the same time, improving its velocity. Ill. 11, bibl. 10 (in English, Summaries in Lithuanian, English, Russian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.