An Electrodynamical Analysis of a Model Heart
Abstract
Presents a numerical analysis of an electrodynamical problem. The problem was solved by using our Singular Integral Equations’ Method. We formulated the problem in this way. A metal microwave catheter (antenna) was placed inside of a three dimensional asymmetric model heart. The catheter radiated a microwave with a frequency of 10 GHz. The model heart was limited by a noncoordinate shape surface. The model heart consisted of two different size cavities. The heart cavities were schematic images of the left and right atriums and ventricles. In our calculations the cavities were filled with blood and the walls of the heart consisted of myocardium tissue. In this article we analysed four model electrodynamical problems that could be used in medical microwave ablation. Several different dependences of electric field distributions were investigated at different locations and shapes of microwave catheters at two cross-sections of the heart. Our calculations showed that the electric field distribution was best suited for the ablation when we used a curved catheter that touched the inner wall of the heart. Ill. 6, bibl. 11 (in Lithuanian; summaries in Lithuanian, English, Russian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.