Corneal Thickness Factor and Artificial Intelligent Control for Intraocular Pressure Estimation
Abstract
Estimation and valuation of confounding factors via artificial intelligent technologies is of the main importance when eliminating intraocular pressure tonometric mistakes. Current investigation focuses on intraocular pressure (IOP) magnitude, being the basis in diagnosis and monitoring of ocular hypertension, valuation reliability. The statistical modeling of experimental data, proved the central corneal thickness (CCT) to be confounding factor and positively correlated source of variation in intraocular pressure measurements among ocular hypertension subjects. To fix reliability of measured intraocular pressure magnitudes the artificial intelligent control in terms of numerical simulations via finite element method is proposed. Referring to statistical modeling of experimental data and provided numerical simulations in general conclusion we point the imperative of the artificial intelligent control method applied for introduce of CCT correction factor when having measured IOP via GAT. The convergence of proposed artificial intelligent control method proves it to be an appropriate alternative for ocular hypertension misdiagnose. Ill. 5, bibl. 3 (in English, summaries in Lithuanian, English, Russian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.