Metamodelling of Queuing Systems using Fuzzy Graphs
Abstract
The dynamic behavior of queuing systems under sophisticated traffic can be analyzed using simulation models. Unfortunately, often the results are only available in a form of large datasets, which makes it hard to extract the underlying regularities. One of the interesting applications is the approximation of the behavior of simulation models, called metamodelling. The goal of this paper is to approximate the behavior of queuing systems as well as to extract some understandable knowledge about the simulation model. In this paper we present the knowledge extraction from trained Neural Networks. The underlying knowledge can be extracted from the Network in form of a Fuzzy Graph. The Fuzzy Graphs are generated using Rectangular Basis Functions of Neural Networks. The research results are illustrated with a range of experiments performed. Ill. 1, bibl. 8 (in English; summaries in English, Russian and Lithuanian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.