Matrix-based Neural Network with Linear Nodes
Abstract
In this article we propose a new linear model for regression/classification of matrix input data. The algorithm for parameter estimation is constructed, some properties of the model are analyzed. The proposed model was applied for various binary classification problems, experimentally demonstrated, that in the case of small training sample, this model can be more efficient than standard techniques. In each experiment the training sample was selected randomly, the results (correct classification probabilities on the testing set) were averaged, statistical hypothesis about efficiency of the models were tested. By signed rank test most of the results are statistically significant. Bibl. 9 (in English; summaries in English, Russian and Lithuanian).
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.