Decentralized Dynamic Power Management with Local Information
DOI:
https://doi.org/10.5755/j01.eie.25.1.22734Keywords:
Distributed optimization, Optimal power flow, Renewable energy, Power management.Abstract
The multi-period version of the optimal power flow can tackle the power dispatch problem of modern distribution system with distributed renewable energy sources and energy storage system. In this paper, a communication-efficient decentralized optimization algorithm (DOA) for the multi-period optimal power flow problem is presented. Firstly, the power management of modern distribution system is modelled as a linear conic optimization problem based on the conically relaxed power flow equations. Secondly, some ancillary variables at the junction bus are introduced to decompose the distribution system into several separate parts. Moreover, the DOA based on the extended version of Alternating Direction Method of Multipliers (ADMM) is proposed. The DOA evolves by partial local message exchanges without central coordination. Finally, the colouring scheme, which is in accord with the network colouring used in communication protocols to avoid packet collisions, is applied in the decentralized algorithm as well.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.