Application of Local Outlier Factor Algorithm to Detect Anomalies in Computer Network
DOI:
https://doi.org/10.5755/j01.eie.24.3.20972Keywords:
Intrusion detection, Anomaly detection, Local outlier factor.Abstract
Gap between the new attack appearance and signature creation for this attack may be critical. During this time, many computer systems may be affected and valuable resources may be lost. Even after signature creation, many computer systems still stay vulnerable because of bad security practice, i.e. patches and updates are not installed as needed. Therefore, anomaly intrusion detection system (IDS) that is capable to detect new unknown attacks is valuable security tool. This paper analyses the use of Local Outlier Factor (LOF) to detect anomalies in the computer network. The application of the LOF algorithm for the detection of anomalies when only normal network data are used for the model training has been demonstrated. Experimental results of different threshold values influence on the anomaly detection accuracy using NSL-KDD dataset is presented.
Downloads
Published
How to Cite
Issue
Section
License
The copyright for the paper in this journal is retained by the author(s) with the first publication right granted to the journal. The authors agree to the Creative Commons Attribution 4.0 (CC BY 4.0) agreement under which the paper in the Journal is licensed.
By virtue of their appearance in this open access journal, papers are free to use with proper attribution in educational and other non-commercial settings with an acknowledgement of the initial publication in the journal.