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Introduction

This paper is an extension of authors’ previous work
presented in [1], and is an effort to view critical robot tasks
by making a clear separation between different inference
levels, e.g. vector marks method belongs to higher
inference level and is described in literature [2]. This work
is dedicated for Maximum relative Entropy (MrE) method
using simultaneous updating of model combination and
data. Practically all Simultaneous localization and mapping
(SLAM) using Bayesian inference perform sequential
updating. We derive the approach which can perform
validation and estimation (VE) of data using simultaneous
updating and model combination.

Moreover, it embodies Occam’s razor, which states
that “entities must not be multiplied beyond necessity”. In
other words, in addition to VE of observed data we must
know for how long sensors did not report correctly based
on other sensors which link to the failing sensors through
associations, i.e. formalism which can be expressed by
formulas.

Maximum relative Entropy

Maximum relative Entropy method uses widely
known relative entropy formula (Kullback-Leibler
divergence):
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where P stands for probability density function, x is
observed data as },,{ rightleft llx  with

leftl - left optical

wheel encoder’s measured distance’s increment,
rightl -

right optical wheel encoder’s measured distance’s
increment,  - robot direction angle’s increment during
robot’s motion;  '''''' ,,   is the selection of

observation models with ' representing robot motion
model, when left wheel returns correct observation, and
right wheel slides (as the result of dynamic uncertainty
such as manual hit or sliding because of slippery ground),

'' representing a model when right wheel reports correct

observation, and left wheel slides and finally '''
representing model when both optical encoders report
correct observation values.

Joint prior  ,old xP consists of likelihood  |old xP

and Bayesian prior  oldP through relationship

      |, oldoldold xPPxP  . (2)

Several important notes have to be clarified at this
point.

a) Robot direction shift angle  is assumed to be
valid for the sake of clarity when explaining this approach
to a reader. In fact, it can be shown that validation of 
can be performed at higher abstraction layer where data
associations come into effect after we validated optical
wheel encoders’ observations.

b) Another assumption about the angle shift  is
that it is based on the feature drifts when inferring it while
tracking environment features in perpendicular direction
compared to robot’s motion direction. A reader can find
the distance measurement in 3D environment in literature
[3].

c) It is assumed that
leftl has been read from the

optical encoder, which was on the wheel that truly traveled
shorter distance than the distance truly traveled by the right
wheel. The approach of this paper can be easily extended
to incorporate any combination of these true distances.

d) It is worth of mentioning that any model
combination is possible and supported by this method. In
fact, the simplest and most intuitive model combination is
inferred. Moreover, what distinguishes this method from
other Bayesian Model Combination methods is that MrE
can validate observations, estimate model combination and
infer robot’s position (location) simultaneously based on
environment data associations and dynamic constraints.

Bayesian Model Averaging is sometimes used in
solving localization tasks too. Its interpretation is that one
model is responsible for generating the whole data set. Its
serious drawbacks are performance due to its sequential
nature and not treating of combinations of the models.
Moreover, performance should receive a special attention,
when mission critical tasks are to be sought.
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Dynamic constraints

The following dynamic constraints will be used when
maximizing (1) using Lagrangian:
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where )( newxx  – the Dirac delta function representing

constraint on observed data [4], formula (4) embodies
normal distribution’s normalization constraint stating that
“robot is somewhere”,  – statistical expectation of the

line segment modulus traveled by robot’s center during
observation time and function  f – expressed in terms

of
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Clarification on function parameters: argument d – the
distance between robot wheels divided by 2, '

leftl – distance

traveled by left wheel for trajectory parts where model '
was in effect, ''

rightl – distance traveled by left wheel for

trajectory parts where model '' was in effect, '''
leftl –

distance traveled by left wheel for trajectory parts where

model ''' was in effect and similarly '''
rightl . It can be easily

seen that model ''' is a composite of models ' and '' .
Special attention has to be paid to the expectation  .

Robot has to interrogate for its incremental distance and
angle measurements so that the time t between
interrogations has to be
a) small enough so that angle shift  is big enough to

validate distances using it,
b) big enough so that change of robot kinetic energy is

negligible and constraint (5) is satisfied.
A time period was picked mst 100 in simulations

whose results are presented later in this paper.

Simultaneous updating with model combination and
data

Maximization process of formula (1) by incorporating
constraints (3–5) through Lagrange multipliers and product
rule of conditional probabilities leads to
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where  oldP – prior as in Bayes theorem and  |newold xP

– Bayesian likelihood. Lagrange multiplier  is calculated

using
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and normalization factors  and
new are found using
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The detailed explanation of MrE approach and its
justification can be found in [4].

During the simulation prior  oldP is treated as flat,

i.e. uniform prior distribution. This is justified by the fact
that prior dynamic uncertainties or previous x observations
have no effect to current calculation of probabilities if we
know the expectation  . Markov assumption goes into

effect. Bringing it even simpler: if we know that t is so
small that the change of robot kinetic energy is negligible,
we know what is the modulus of line segment traveled by
robot’s center. So uniform prior distribution becomes
proper and our prior is justified.

Special consideration has to be taken when calculating

 |newold xP . In the simulation model, used by this paper

the change of robot kinetic energy is negligible too. It
means that the  f has normal (Gaussian) distribution

expressed as
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where standard deviation  has to be picked so that it is
a) small enough to make likelihood function sharp

enough to validate observation data and infer robot’s
position,

b)big enough so that calculation errors do not corrupt
MLE function with noise.

There is an important note that has to be mentioned
regarding  newP as in formula (7). The expectation value

is not the same as Maximum Likelihood Estimate (MLE).
Mathematically it can be expressed as

 


newmaxarg P . (12)

Sequential versus simultaneous

Before elaborating on sequential versus simultaneous
we need to clarify on commutivity of constraints used in
MrE approach. Commuting constraints are such constraints
that make no difference whether they are processed at the
same time or not, for details see [2] and related work of A.
Giffin and A. Caticha. Assume an agent is bypassing the
robot. Also assume that robot inferred  while tracking
this moving agent. It is clear that we can no longer use
simultaneous updating, because we can no surely know the
expectation  .

When constraints are non-commuting then sequential
updating has to be performed using MrE method. One of
the works in sequential updating with data when localizing
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and mapping the robot under dynamic constraints is
FastSLAM approach presented in the monograph [5]. MrE
could extend such sequential approaches by adding
Validation of data, and dropping uninformative priors.

The word simultaneous in acronym SLAM explains
that it solves both localization and mapping as such.
However its nature is sequential from the point of view of
updating with observed data. It takes multiple Bayesian
iterations until FastSLAM converges to the next proper
robot’s position. Meanwhile MrE uses updating with
model combination and data and it is simultaneous from
the point of view of updating using Bayes theorem. It
enables data validation, and helps to avoid position
estimate deviations when solving SLAM problem under
strong dynamic uncertainty. Which means faster robot
reaction and fewer deviations in location.

Simulation results

MrE using simultaneous updating with model
combination and data has been confirmed in the simulation
experiment. Equations of the robot models are derived,
simulation framework is implemented and two simulation
experiments were performed.

It is clear '' statistics is sufficient for finding the

distribution of ' , so we can find marginal distributions
shown in figures (1) and (2) using formulas

    ''

''

'''' d, 
 PP , (13)

    '

'

''''' d, 
 PP , (14)

where     newPP ''' , from formula (7).
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Fig. 1. First simulation experiment’s MLE functions with model
change estimates at t3.0 and t5.0

At the first experiment the left wheel’s observation
data is lost for time period ]5.03.0( tt  and the right

wheel’s observation data is lost for period ]3.00[ t .

MLE functions (Fig. 1) show correct detection of time
moments in a relative range where each model was in

effect. At the second experiment the right wheel’s
observation data is lost for time period ]5.003.0( tt 

and the right wheel’s observation data is lost for period

]03.00[ t .
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Fig. 2. Second simulation experiment’s MLE functions with

model changes at t3.0 and t5.0

It is worth of noting that it is not possible to infer of
exact time moment of model shift during time period t
without making more frequent measurements, but the
question is whether we really need it. It is clear that for
practical intuition it is enough of optimal detection of the
duration of how long each model was in effect. This would
give us enough information on the ground where robot is
moving on and other external disturbances. Moreover, time

t is selected to be small enough to make us less
interested in deeper sampling of the signal.

Conclusions

The following conclusions can be drawn based on
theoretical derivations and simulation results:

1. Simulation results confirm that models selected were
correct and approach finds optimal solution under.

2. If robot’s task is mission critical, and there can be no
delays in processing, then either simultaneous updating has
to be chosen, or new robotic sensor added. The new
sensors should observe static or relatively features, thus
enabling simultaneous updating. This would require
increasing t when higher inference level.

3. Sliding of robots wheel due to manual intervention or
kidnapping can be detected by using regular motion
sensors, (e.g. wheels’ distances and absolute robot’s
angle).

4. MrE with Simultaneous updating and model
combination embodies Occam’s razor, performs
simultaneous VE of data through MLE and might be a part
of any sequential Bayesian approach.

Further research is to extend models for non Gaussian
distributions of sensor likelihoods, and apply MrE when all
sensors are prone to errors by seeking for static features to
infer from.
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