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Introduction

Industrial robots are commonly controlled in joint
space to perform position control [1]. In practice, for
tracking a trajectory in task space, an industrial robot
follow a desired trajectory in joint space which is already
recorded in a learning process called the "teach and play
back" technique. Actually, the transformation from task
space to joint space is realized perfectly by this technique
while a computed transformation such as inverse
kinematics may involve model uncertainties. This
technique works well if the transformation to be
repeatable. Thus, it is not surprising if a joint space control
can provide a desired tracking performance in task space
without feedbacks from the end-effector position since an
industrial robot is constructed in a high quality with a good
repeatability, precision and resolution to overcome
uncertainties.

In joint space control, feedbacks from joint space are
given to control system for tracking a desired trajectory.
This control system does not detect the position error of
end-effector in work space. Even if a precise tracking of
joint positions is achieved, a desired tracking in task space
is not provided by the use of imperfect transformation of
control space. Thus, due to detecting tracking error of the
end-effector, task-space tracking control of a normal-cost
robot is superior to joint space control. It means that we
can expend less cost to achieve a desired performance by a
task-space control of a normal-cost robot in replace of
joint-space control an expensive robot. However, obtaining
feedbacks from task-space is not as convenient as joint-
space. The joint positions are measured suitably by optical
encoders while end-effector position may be detected using
vision systems [2-3].

There is a challenge in robot control to overcome
uncertainties, nonlinearities and couplings from different
aspects in the field of robust control as surveyed in [4-7].
The robust control provides stability under uncertainties
with a trade off between tracking performance and bounds
of uncertainties. This control approach was extensively
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presented in joint space while controlling a robot in task
space is still a control problem. Recently, several
regulating controllers were proposed for task space to
overcome parametric uncertainties [8]. The approximate
Jacobian controllers were proposed with task-space
damping for the set-point control of robot with uncertain
kinematics and dynamics [9]. And, an adaptive Jacobian
controller was proposed for trajectory tracking control of
robot manipulators in task-space under parametric
uncertainties [10]. The controller does not require exact
knowledge of Jacobian matrix and dynamic parameters.
Moreover, an adaptive task-space tracking control method
was proposed using visual task-space information to
overcome the parametric uncertainties in model including
actuators [3]. Thus, adaptive control of robot in task-space
is successful to overcome parametric uncertainties,
however unstructured uncertainties are remained to
consider.

The robust control approaches can present the uniform
bounded error convergence in the case of wide range of
uncertainties. This is a result of uniform ultimate
boundedness (u.u.b.) of the tracking error using the
Lyapunov based theory of guaranteed stability of uncertain
system [11-12]. The u.u.b. of the tracking error will not
result in a perfect tracking performance such as asymptotic
stability.

In this paper, a new nonlinear robust control is
proposed for trajectory tracking of robot with uncertain
kinematics and dynamics. Simulation results are presented
to illustrate the performance of the proposed controller.

Problem Formulation in joint space

The dynamics of the robot with n degree of freedom
can be expressed as [6]

M (a)d+V,(0.6)4 + Gla)+ Fyg+ F(6)+ T, ==(t), (D

where q(t)e R"denotes the joint angles of the manipulator;

q(t) and q(t) are the vectors of joint velocity and joint



acceleration, respectively. M(q)e R™" is the inertia matrix
which is symmetric and positive definite, V, (q, q)q eR"is
a vector function containing coriolis and centrifugal
forces,G(q)e R" is a vector function consisting of
gravitational forces. Fy € R™"is a diagonal matrix of
viscous and dynamic friction coefficients, Fg (Q)e R"is
the vector of unstructured friction effects such as static

friction terms. Ty € R"is the vector of any generalized
input due to disturbances or un-modeled dynamics,

z(t)e R" is the vector function consisting of applied

generalized torques. For simplicity of (1), H (q,q) can be

shown as:
H(9,6)=V,(a,4)d+G(a)+ Fyd + Fy(¢)+T,. 6)
By substituting Eq (2) into (1), we have:
M (a)i+H(a,q)=={t) &)

In the presence of uncertainty such as unknown
parameters, frictions, load variation, disturbances and un-
model dynamics, dynamics of robot manipulator in (3) are
usually not totally known. All the terms in Eq (3) can be
reduced into two parts, without loss of any generality:

{M(q)= M, (a)+M,(a) @
H(qsq): Hk(qBQ)J’_ Hu(q’ql
where

Hk(q’Q):Vm,k(q:q)q+Gk(q)+ Faxs
Hu(q5Q):Vm,u(qaq)q+Gu(q)+ Fd,uq+ FS(Q)J'_Td’ (5)

where Mk(q), Hk(q,Q), Vm,k(QaQ)a Gk(q) and Fd,k are
the known parts and Mu(q), Hu(q,(']), Vm,u (q,q), G, (q)
and Fy, denote the unknown parts of M(q), H(q,q),

Vi (q,q), G(q) and Fy respectively. To design nonlinear

robust controller, the following assumptions should be
established.

Assumptions
1. ml,<M(q)<m()l, ,vqeR";
2. Mmlaaf<é&@)d] . va.geR";
3. Ry +Fe(y)=&5, + S V] vy e R
4. Je(y)<é&(y).vyer";
5. [mall<és

Wherem,ffo , &¢ and &are positive constant and

1

assumed to be known constants. ﬁ(q) and & (q) are
known, positive definite function of q and &y is a known

positive definite function. For a revolute- joint robot,
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matrix M(q) is not only positive definite but also its
dependence onqis in the form of the trigonometric

functions, sine and cosine. This implies that, for revolute-
joint robots, m(q) =m,&; (q) =¢c and &g (q) =g are all
constants.

Control input in joint space
By substituting Eq.(4) into (3), We have:
(M, (@)+ M, (@) +(H,(a.6)+ H, (a.0) = {t).

We define position error e(t)=qq —g and velocity

(6)

error €(t)=(q4 —(in joint space. According to Eq.6, we
propose control law to following form:

7(t) =M, (q)d, +H, (0,6)-aet)—két) +u,, (7

where ¢y € R"is desired joint acceleration, o and k are
positive constant and U, is new robust control law. (7) is
substituted into (6) and it can be simplified as:

8t) =M, (@M, ()i + H,(0,d)+ae(t) +

8
+két)—u,). ®

We define following equation:
AA =M, (q)i+H,(0,q)+ ae(t) + k). ©)

Since all of the joints are revolute and by according to
assumptions (1)—(5), we have:

A < Ml + &l + & + &1, + & el + & +

(10)
+alet)]|+ ket
We can express Eq.(10) to the following form:

[ < 8+ o] + k[l (1
where is  positive  constant. By  defining
e(t) = X (t) and é(t) = X, (t), (8) can be expressed as:

X, () = X, (), (12)

{Xz(t) =M, (@(AA-u,).
Closed loop system (12) can be controlled by
backstepping method, therefore we can select X,(t) as

control law until X (t) converges to zero [13]. Thus we
propose X, (1) as:
Xy (1) =—p X, (1),

where u is positive constant. For stability proof, candidate

(13)

Lyapunov function is suggested as:

1 14
Vi(X) =2 XX, 1), (19)
The time derivative of (14) is
; ; 15
V(X)) = X O, 0. (1)
Substituting (12) and (13) into (15) results in:
(16)

V(X)) ==X (X, @)



(16) shows that Vl (X1) <0 ,therefore X;(t)converges to
Zero.

Closed loop stability proof

For stability proof of closed loop system (12), we
proposed candedate lyaponov function as:

V(X X0) =2 XT (X, () +
| 2 (17)
+E(X2(t)+ﬂX1(t))T(X2(t)+#X1(t))-
The time derivative of (17) is
V(X1 X5) = X[ (DX, (D) +
+ (X, (1) + 2 X, (0) (X, (0 + X, (1))
(12) and (13) are substituted into (18) as:
V(X1 X,) = = X[ (X, (0 +
+ (M (@AA=U) + X, () (X, (1) + X, (1)),
(19) can be simplified as:
Vo (X, X5) = = X, O + (M (@AA)
x (X, (0 + X, () +(u X, (1) - M (@u,)" x

x (X, (1) + 1 X, (1))
According to assumptions 1-5, we can express (20)

(18)

(19)

(20)

as:
Vo(X,,X5) < X, O + [l

x| X, @)+ 1 X, O+ (1 X, ) =M (@u,)" x

X (X, (0) + 1 X, (D).
According to (21), robust control law u,can be

1)

suggested as:

Uy = My (@) 1 X, (1) + 7 M (@)X, (0) + 2 X, (D), (22)

where y is positive constant. Substituting (22) into (21)
results in :

V(X X,) < = X, O +

o . e, )] - (3)
X+ X,
According to (11), (12), (13) and (23), we have:
Vo(X,, X X, O e, ]
(24)

A =7|X, 0+ wX, @,

where ¢ and A are positive constant. According to (22)
and (24), u# and y are coefficient of controller. So we can

Jer’1

guarantee \/2 (X1,X,)<0 by properly selecting these

coefficients. Thus closed loop system (12) is global
asymptotic stable by using proper control coefficients. The
joint space control law follows as:

{T(t) =M (@) +H,(9,0) - ae(®) ke +u,,

25
Uy = M (@) 6(1) + 7 M, ()(ED) + e(t)). )
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Robust backstepping control in task space

Closed loop system (12) is global asymptotic stable
using the joint space control law (25), but according to the
introduction section, precise trajectory tracking of robot
manipulator cannot be guaranteed using the control law
(25) in task space. Therefore, we will generalize robust
backstepping control in joint space to task space in this
section.

We know that Robot dynamics in task space follows
as:

Aa)X +N(g,6)= f(t)
Aa)=3"T @M (@)™ @
N(g.4)=3"T(@H(a.4)-
—3T@M(@)I " (@I @4

In the presence of uncertainties, dynamics of robot

manipulator in (26) are usually not totally known. All the
terms in Eq (26) can be reduced into two parts:

A@) = A (@) + A, (a),
A@=3"T (@M (@) I (@),
N(9,9) = N, (a,9) + N,(q,9),
Ny (0.8) =37 (@) H,(a,4) -
-3 (@M, (a)I @@y,
where A (@), My (), Ni(g.d)and Hy(q,q) are the
known parts and A, (q)and N (q,q) denote the unknown
parts of A(Q), M(Q), N(q,9) and H(qg,q) respectively.

According to the previous sections, we can proof that
system (26) are global asymptotic stable with following
task space control law:

f(t)= A (@)X, + N, (0,0) - aet) —ket) +u,,
U, = A (0) 2€(t) + 7 A (D)) + e(t)),
e(t)=X,-X , ét)=X,-X,

(26)

27)

(28)

whereer, k, x4 and y are positive constants, Xdis
desired task space acceleration,e(t)and é(t)are position

and velocity errors in the task space, respectively. For
stability proof, we suggest candidate Lyapunov functions
(14) and (17).

Modifying the Control Law in task space

Sensing requirements is another important problem
which should be considered. The control law (28) is
formed by measuring joint positions (, the joint velocities

g and the end-effector positions X and the end-effector

velocities X . A joint position is commonly measured by an
optical encoder and a joint velocity may be measured
directly or by soft derivative of joint position and many
commercial sensors are available for measurement of X ,
such as vision systems, electromagnetic measurement
systems, position sensitive detectors or laser tracking

systems. However, X is rarely measured in robotic
applications while vision technique can be used for this
purpose. Alternatively, vision technique was used to



measure the end-effector position X precisely and then

X can be computed. For sake of practical purposes, (28)
can be modified as

(f(1) = A@X, +N,(0.0) - aet) - két) +u,
U, = A Q) 1€() + ¥ A (@)(EN) + pe(t)),

e(t) = X, — X, &) =X, - J(@)q,
A@=3T @M, (@3 (@),

Ny (a.9) = 3T (@) H, (a.9),

9T @M (@3 @@,

(29)

where J (g) is an estimation of Jacobian matrix. Control
law (29) is formed by measuring joint positions  , the joint
q
control law (29) with respect to (28) is more practical. But
in the presence of imperfect Jacobian matrix, we have
velocity computation error in (29), Therefore closed loop
system has uniform ultimate boundedness stablity using
control law (29). To reduce production cost in control law
(29), we can compute position errors using velocity errors.
Thus control law (29) can be modified as:

(T (1) = A @)X, + Ny (q,0) - are(t) - ket) +u,,
U, = A (@) #&(t) + 7 A (Q)(E() + me(t)),

&M= [émdt , év) =X, - I(@4,
A@=3T @M, (@I (@),

N, (a.9) =37 (@) H,(a.9) -
RRGLNOBOMOL

To apply (30), we need to measure joint
positions g and the joint velocities g . Although closed loop

velocities and the end-effector positions X . Thus

(30)

system has uniform ultimate boundedness stability using
control law (30), but trajectory tracking error in task space
is controllable. Because, we have:

6t) =X, - X, é=X, - (@0,

&(t) = pee(t), € = ué(n),

&(t) - &(t) = (8(t) - e(t)) = X — J(q),
@M -e)=u"' (X -3(@).

According to (31), tracking error in task space is
reduced by increasing of control coefficient 4 .

€2))

Case Study of Two-Link Elbow Robot Manipulator

In order to verify the performance of proposed control
schemes, as an illustration, we will apply the above
presented controllers to a two-link elbow robot
manipulator shown in figurel. The dynamic of the two-link
elbow robot manipulator can be described in the following
differential equation [6] :

M,

{M“
M21 M22

+F +Ty =2(1),

:|q+vm(an)q+G(Q)+Bq+qu+ (32)
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2

My, =ml2 +m, (12 +12 +211, cos(@,))+1, +1,, (33)
M,=M, = mz(lf: +|1|c2 cos(qz))+ 1, (34)
My, =m, 12 +1,, (35)
. -myl 1. q,sin(g,) —-m,l 1. (¢, +d,)sin(q,)
V(a.4)= 2 : . (36
( ) {mzlllcqusm(qz) 0 }
Gqy = M Tl geos(@)Fmol. geos(@ )| (5
m2|czgcos(q1 +0,)
F, 0
F =| “ 38
d { 0 F, } %)
F
F =| ® 39
| |:F5::|’ ( )
T, sin(t
n:{¢ (q, (40)
Ty

where q; for i =12 denotes the joint angle, | is the link
length, m; is the link mass, ~ is the link's moment of
inertia given in center of mass, ici is the distance between
the center of mass of link and the ith joint, Fdi is dynamic
friction, Fg is static friction, Ty, is disturbance and un-

model dynamic and 7(t) is torque input.

y A

Fig. 1. Two- Link Elbow Manipulator

The Jacobian matrix is in the form of
@)= {— I, sin(q,) ~1, sin(q, +0,) —1,sin(q, + qz)} (41)
I, cos(q,)+1, cos(q, +d,) 1,cos(q, +4,)
The kinematic equation is given by
|:|1 cos(q,) +1, cos(q, + qz):|
l, sin(q,) +1, sin(q, +d,) .
The link's parameters are estimated by a gain of 0.9

from real values given in Table 1. We set the controller
witha =1, k=1 and g =20. Then a circle with a radius

(42)

of 0.5 m centered at (0.95,0.95) is given to control system
as a desired trajectory. Initial condition is at (1,1).



Table 1. Parameters of Two- Link Elbow Robot

Link | L | Le | M | I | Fs | Fg | T4
1 1| os | 15 ] 5| 1 1 50
2 1 o005 | 6 | 2] 1 1 10

Simulation Results

Siml. the joint space control given in (25) is
simulated with y = 20 to track the circle. The performance

of control system is not satisfactory as shown in Fig.2
while the norm of tracking error in task space shows a
maximum value of 10 mm in Fig. 3.

Sim 2. The task space control given in (28) is
simulated where the paramiters are the same as before. We
cannot see any differences between the desired and actual
trajectories as shown in Fig. 4. the norm of tracking error
in task space has been converged to zero as shown in Fig.
5. The control inputs are under the permitted values of
40 Nm as shown in Fig. 6.

Sim 3. The modified control given in (30) is simulated
where the parameters are the same as before. The norm of
tracking error in task space shows a maximum value of
1.5 mm in Fig. 7. We can reduce the maximum norm of
tracking error by increasing control coefficients x and y in
the modified control law (30) as shown in Fig. 8. The

simulation results show norm of errors for given values of
20, 60 and 100 to « and 40, 75 and 100 to y , respectively.

Desired Path
""" Actual Path

0.99-

0.98

0.97

0.96 -

Y Axis
o
©
&

0.96 1.02

X Axis

0.92 0.94

Fig. 2. Tracking a circle by control law (25)
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Fig. 3. Norm of tracking error in task space
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Fig. 4. Tracking a circle by control law (28)
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