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Introduction 

 
Artificial Neural Networks (ANNs) are 

computational models of a fractional part of biological 
nervous system. ANN is computation intensive to suit 
complex applications [1] though its structure is simple. 
Most of the ANN applications use Feed Forward (FF) 
architecture with gradient–based learning like Back 
Propagation (BP) algorithm [2] or modified BP algorithm 
[3]. As the complexity of the network increases, the search 
space appears with more and more local optima and 
gradient–based learning may not always lead to global 
minima. Moreover BP needs complex operation, which 
restricts the search coverage. To improve the global 
convergence capability, an Evolutionary Algorithm (EA) 
[4] can be used. It refers to a special class namely; 
Evolutionary Artificial Neural Networks (EANN’s) in 
which evolution is another fundamental form of adaptation 
in addition to learning [5]. EANN can be exploited to 
design the architecture, learn weight, adapt the learning 
rule and extract the rule from ANN [6]. EA was broadly 
classified as Evolutionary Strategies (ES), Evolutionary 
Programming (EP) and Genetic Algorithms (GA), though 
many other types have emerged in the recent past [7]. The 
work presented here uses GA to simultaneously evolve the 
structure and weight of ANN. Capability of GA in the 
exploitation of information guides the direction of search 
towards feasible region and hence it converges at global 
optima.  

Although the software implementation exactly 
replicates the given algorithm, relatively inexpensive 
massive parallelism is exhibited when ANN is realized in 
hardware using Very Large Scale Integration (VLSI). A 
digital implementation of Genetic Algorithm based Neural 
Network (GANN), to solve Parity Function and Character 
Recognition problem is explained here. To solve N–bit 
parity functions, the Feed Forward Neural Network 
(FFNN) needs N neurons in the hidden layer [8]. Stork and 
Allen [9] reduced it to two hidden units with diode–like 

Activation Functions (AF). Few others [10, 11] had tried to 
solve the function without imposing any constraint on AF. 
On the other hand, genetically evolved Neural Network 
(NN) proposed in this paper, solves the N–bit parity 
function with N/2 neurons in the hidden layer. The second 
application of GANN realizing Character Recognition, 
exhibits improved performance in terms of faster 
convergence with acceptable error. Thus the GANN to 
solve benchmark problems of 8–bit Parity and Character 
Recognition is proved to consume lesser area with 
increased speed and reduced error. By altering the 
topology and links, the designed Neuro–Genetic Hybrid 
System can solve any function with binary inputs. Main 
objective of the research is to implement the evolved 
neural network in VLSI hardware exhibiting the following 
characteristics; 

- Simplicity and regularity of the structure with 
minimal interconnections 

- Expandability and design scalability to combine 
more modules together 

- Reduction in silicon area by replacing multiplier 
with comparator in the hidden neuron 

- Absence of learning unit due to the genetic 
evolution of structure and weight, minimizing the 
hardware further 

- Solving the parity function with reduced hidden 
layer neurons and recognition of character in 
lesser number of generations 

The review of GANN, algorithmic development, 
architecture design and observed results are presented in 
the following sections. Simulated results of GANN ensure 
the successful implementation of neurohardware. 
 
Review of GANN 

 
Genetic evolution of NN may broadly be 

classified as non–invasive and invasive technique. Non–
invasive method combines GA and gradient learning, 
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where the former evolves the structure and the latter adapts 
the weights. Since it involves gradient method, proper 
initialization and network implementation is needed to 
overcome the local minima problem [12]. On the other 
hand, invasive method uses GA for both weight and 
topology evolution of ANN. A purely non–invasive 
approach with a constructive algorithm is demonstrated in 
[13] to evolve Cooperative NN Ensembles (CNNE), using 
incremental learning. This reduces redundancy and 
maintains diversity to offer a better solution. Smalz and 
Conrad [14] proposed a method to assign fitness to 
individual neurons of ANN, rather than the whole network. 
Odri, S. V., Petrovacki, D. P. & Krstonosic, G. A [15] 
developed a non–population based learning algorithm, 
which could alter the architecture of ANN.  

McDonnell, J. R. & Waagen, D. [16] tried invasive 
approach to evolve the interconnectivity with weight 
values of ANN, to solve binary mapping and 3–bit parity 
problem. Improved GA for tuning the structure and 
parameters of an ANN is explained in [17]. Generation of 
three offsprings using different mutation operation leads to 
the improvement. Structural and weight learning by 
mutation is employed in GNARL algorithm to construct 
Recurrent NN [18]. Based on GNARL algorithm, a 
Mutation–based Genetic NN (MGNN) is implemented in 
[7]. The invasive method of using GA for simultaneous 
weight and topology evolution is adopted here. The 
hardware friendly hybrid system is implemented in VLSI 
and its merits are discussed with results. 
 
Algorithmic development of GANN 

The factors influencing GANN evolution are 
encoding scheme, genetic operators, fitness function and 
stopping criteria. Presented work follows binary encoding 
scheme to simplify the digital hardware implementation. 
The genetic operators namely; two–point crossover and 
uniform mutation with probability of pc and pm of 0.8 and 
0.01 respectively are applied. The fitness function of 
GANN is chosen to be minimization of mean squared 
error. Convergence of the network is ensured and 
computation is stopped when the fitness variation in 
consecutive iteration is insignificant. 

Primarily in GA, a set of initial encoded schedules 
known as chromosomes is randomly created. Each 
schedule is valuated for "fitness". Then, processes based on 
natural selection, crossover, and mutation are repeatedly 
applied on a population of binary strings which represent 
potential solutions. Over time, the number of above–
average individuals increases and better–fit individuals are 
created, until a good solution to the problem at hand is 
found [19].  

 
Pseudo code of GANN 

 
The procedure followed in the algorithm is explained 

with example 
1. Initialize the random population (weights and bias 

of network); 
2. Generate input and target vectors to suit the 

application; 
3. Assign chromosomes from the population to the  
       network of initial topology; 

4. Simulate the network; 
5. Evaluate the fitness function or Mean Square 

Error (MSE); 
6. Increment the number of hidden neurons and 

repeat the process, until a best fit      
population is obtained; 

7. Do two point crossover on the population to 
exchange information between parents: 
   For example, if p1 and p2 are the parents  

                  p1 = [11111111],  p2 = [00000000];   
                 and the crossover points are 3 and 6 then 

Child = [11100011]; 
8. Get the best population, choose parent and mutate 

to gain the lost material:    
       For example, let the parent be       P: 00000000 

   After uniform mutation           Child: 00010001;         
9. Stop if the condition is satisfied and plot the 

required results. 
The algorithm is executed with an initial population of 

chromosomes of length 41 and 50 for the 8–bit Parity 
Function and Character Recognition problem respectively.  
 
Application Examples  
 

Eight–bit Parity Functions. To verify the 
performance of the evolved neurohardware, eight–bit 
parity problem is chosen. Any change in input alters the 
output and hence the parity problems become harder to 
solve. It is one of the benchmark problems due to its 
simple definition but great complexity [20]. Feedforward 
networks with one hidden layer require eight neurons in 
the hidden layer that is reduced to four, when genetically 
evolved. Hence FFNN with N/2 neurons in hidden layer is 
implemented in this paper and the performance is 
validated. Design of four hidden neurons to realize three–
bit parity is now utilized to solve eight–bit parity function 
as shown in Fig. 1. 

 

 
Fig. 1. Architecture to solve 8–bit parity function: 1~ 8 – Input 
Layer Neurons; H1~H4 – Hidden Layer Neurons; O1 – Output 
Layer Neuron 
 

Topology evolution and network convergence for 
varying number of hidden layer neurons of 8–bit parity 
function is presented in Table 1. 

TCLX – Character Recognition. Character 
recognition is a trivial task for humans, but for computers 
it is extremely difficult. The main reason for this is, the 
many sources of variability. Characters represented by 7  
5 matrix was realized using pulse–coupled neurons [21]. 
To reduce complexity, a 3  3 array of pixels is chosen 
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[22] to represent the characters T, C, L and X in nine bits 
as shown in Fig. 2. A black pixel and white pixel denotes 
one and zero, respectively.  
 
Table 1. Evolution of 8–bit parity function 

Network 
Topology 

Fitness value Generations 

8–3–1 0.256 45 
8–4–1(best 
network) 

0.25 50 

8–5–1 0.265 63 
8–6–1 0.256 67 
8–7–1 0.25 55 
8–8–1 0.25 70 

 

 
Fig. 2. A 3  3 array of characters – TCLX 

 
The four combinations of two output neurons are 

assigned to denote the four characters, as shown in Table 
2.  
      Topology evolution of Character Recognition 
converges to 9–4–2 with least possible error, as shown in 
Fig. 3 and Table 3 respectively. 
 
Table 2. Binary assignment of TCLX 

 

 
Fig. 3. Architecture 9–4–2 of character recognition 
 

Network with optimized number of hidden layer 
neurons converges fast within 55 generations at an 
acceptable error. Individual modules of the realized 
hardware are explained. 

 
Table 3. Evolution of Character Recognition 

 

Architectural Design 
 

Algorithmic flowcharts of computational models 
namely; Multiplier and Adder are presented in Fig. 4 and 
Fig. 5 respectively. A simple Comparator is also designed. 
These modules are combined together to realize hidden 
layer neuron, output layer neuron and then the complete 
network. Optimized weights are converted to the 
equivalent 32–bit single–precision IEEE 754 format, to 
make it compatible. It has three components namely sign 
(s), exponent (e) and mantissa (m). While realizing the 
network in hardware the hidden neuron structure is defined 
and replicated when required. Design of hidden neuron 
differs from output neuron.  

 
Computation Modules of Neurons  
 

Multiplier  Module. Multiplication is executed as 
follows. Extract the sign(s), exponent (e) and mantissa (m) 
of multiplier and multiplicand. Add the exponents and 
store the result along with the carry bit. XOR the sign bits 
and multiply these two 23–bit mantissa. Adjust the 
exponent depends on the higher order bit of the multiplied 
result. Assign the sign bit for the result based on the two 
operands and normalize the resulting mantissa. Place the 
resulting sign, exponent and mantissa into 32–bit format 
 

                                 
Fig. 4. Flowchart of multiplier 

AdderModule. Extract the sign, exponent and 
mantissa of two operands. Compare the exponent and 
mantissa to check the absolute value and align the decimal 
points for addition or subtraction.  

 
Fig. 5. Flowchart of adder 

 
 

Binary representation 
 

Output 

T 1 1 1 0 1 0 0 1 0 0 0 
C 1 1 1 1 0 0 1 1 1 0 1 
L 1 0 0 1 0 0 1 1 1 1 0 
X 1 0 1 0 1 0 10 1 1 1 
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Compare the sign bit and add if equal; else subtract 
the numbers to get final result. Assign the sign, based on 
the magnitude. Normalize the resultant mantissa and adjust 
the exponent of the result. By interconnecting the 
individual modules, the network is realized. Though the 
explanation below refers to Character Recognition, the 
hidden layer and output layer neurons are designed to solve 
both the problems. 
 
TCLX – Character Recognition 

 
The requirements of ANN such as parallelism and 

performance are related to the silicon area consumed to 
realize the network. Different types of parallelism are 
mentioned like Layer parallelism, Neuron parallelism and 
Synapse parallelism [23]. Neuron parallelism that requires 
one multiplier per neuron is realized in the architecture 
presented here. Hence the neurons of same layer computes 
in parallel and computation between layers are executed 
sequentially. Character Recognition topology is already 
shown in Fig. 3. 

 

Fig. 6. Hidden layer neuron: I1 ~ I9 – inputs; W1 ~ W9 –  
weights, C1 ~ C9 – comparators, A – Adder; OH1 – output 

Hidden Layer Neuron for Character Recognition:       
The output of the hidden layer neuron is the multiplied 
sum of input and weight. Being a binary input, it need not 
be multiplied by weight. A module to check whether the 
input is zero or one (i.e.) a comparator will serve the 
purpose. Each hidden layer neuron comprises nine 
comparators and eight adders to solve character 
recognition problem as shown in Fig 6. Hidden layer 
neuron accepts binary input and the comparator will either 
pass 0 or the corresponding weight to the adder as a result 
of input and weight multiplication.  For example, if the 9–
bit input is 000011111 then the output of the nine 
comparators from top to bottom would be 0, 0, 0, 0, W5 ~ 
W9. Comparators are used instead of multipliers to 
simplify the architecture, which reduces the area 
significantly and improves the speed. Output of 
comparators is added and the hidden neuron output OH1 is 
passed on to the next layer for further computations. 
Multipliers are used only in output layer neuron of the 
proposed design.  

      

The top signal ‘Reset’ assigns weights, when it is 
high and the network produces output when reset is low. A 
clock ‘clk’ of 100 ns is applied, to trigger the network on 
positive edge. 

Output Layer Neuron for Character Recognition:            
Each neuron in the output layer utilizes four multipliers 
and three adders as shown in Fig. 7.The weights are 
multiplied with the hidden neuron outputs and added to 
yield the final output. Proper threshold is set in the output 
adder, to decide the  discrete  binary output.  Multiplier and 

Adder modules are explained already with flowchart.  
 
Results of simulation 
 

A Neuro–genetic hybrid system is implemented in 
hardware to solve parity function and character recognition 
problems. Results after simulation exhibit satisfactory 
performance. 

OH1

Fig. 7. Output layer neuron: OH1 ~ OH4 – outputs from hidden 
layer neuron; Wo1 ~ Wo4 – weights; A1 ~ A3 – Adders; M1 ~ 
M4 – Multipliers & Y1 – final output 
 
Eight–bit Parity Function  
 

Evolved weight set of input–hidden layer and 
hidden–output layer neurons for parity function is shown 
in Table 4 and Table 5 respectively. The internal 
computation modules are ensured for proper functionality 
and interconnected together to realize the application.  

 
Table 4. Weight set of input–hidden layer for parity function 

Input & 
Hidden 
Neurons 

H1 H2 H3 H4 

1 0.8357 1.236 0.9488 1.2441 

2 0.8896 1.2732 0.3288 0.6875 

3 0.5753 0.705 2.0304 –0.2142 

4 0.691 0.8228 1.3995 0.3744 

5 0.7944 1.4901 0.0055 –0.0421 

6 0.8678 0.9432 0.8898 0.5914 

7 0.8965 0.4306 0.3753 –0.4368 

8 0.3099 0.6362 0.2716 –0.048 

 
Table 5. Output layer weight and bias of parity function 
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The design was downloaded in SPARTAN 3E –
XC3S 500E – 5CP132 using Xilinx ISE 8.1i and verified 
using Leonardo Spectrum tool. 
 
Table 6. Device utilization summary–parity generation 

Logic Utilization Used Available Utilization 
No. of Slices 1369 4656 29% 
No. of Slice flipflops 320 9312 3% 
No. of 4 input LUTs 2407 9312 25% 
No. of bonded IOBs 11 92 11% 
No. of GCLKs 8 24 33% 
 
TCLX – Character recognition 
            

Similarly the evolved weight sets for Character 
Recognition is presented in Table 7 and Table 8. Proper 
convergence of network recognizes the binary patterns 
applied and hence the characters as displayed. 

The signals as mentioned in Parity function are 
displayed for character recognition after simulation. 
Feasibility of the GANN promises that the network after 
synthesis could be configured on Field Programmable Gate 
Arrays (FPGAs) through the commercial Place & Route. 

If an eight–bit input, ‘Inp’ is applied, the output, 
‘outtresh’ displays the even parity output on the rising 
edge of next clock cycle. Input to hidden neuron and 
hidden to output neuron weight set is also displayed. 
 
Table 7. Weights and bias of hidden – output layer for character 
recognition 

 
Table 8. Weight set of input–hidden layer of character 
recognition 

 
 

The design was downloaded in SPARTAN 3E –
XC3S 500E – 5CP132 using Xilinx ISE 8.1i and verified 
using Leonardo Spectrum tool. Table 9 shows the device 
utilisation summary for TCLX character recognition.  
 

Table 9. Device utilization summary–character recognition 

 
 
Conclusion 
 
 Genetic Algorithm based Neural Network is designed 
to solve eight–bit Parity function and TCLX Character 
Recognition applications. The GA learning methods with 
different number of hidden layer neurons was investigated 
for ascertaining how change in neural network architecture 
contributes to the overall fitness of the input–weight 
combinations. Combined evolution of structure and 
weights for different functions are tried and implemented 
successfully. Genetic learning of weight makes the 
hardware implementation of FFNN more feasible. GANN 
without multiplier in hidden layer contributes to further 
reduction in hardware. Thus the GANN to solve 
benchmark problems of 8–bit Parity and Character 
Recognition is proved to consume lesser area with 
increased speed and reduced error. Since fixed control 
parameters may hinder the convergence on the latter stage 
of generation, dynamic assignment of parameters like the 
rate of genetic operators is identified for further research. 
And the high potential GA can be exploited to produce 
‘Pareto–optimal’ solutions for the multi–objective 
optimization. 
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