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Introduction 

Gabor filters have been widely used in constructing 
various Gabor features for different computer vision tasks: 
competitive texture classification, segmentation and 
synthesis, fast and accurate object detection and tracking 
[1, 2], one of most precise biometrics iris recognition [3], 
and especially face recognition [4–8]. Gabor features are 
proved to perform very well because of their properties 
like rotation, scale, translation and uniform lighting semi-
invariance [9]. On the other hand, computational 
complexity still limits their application in practice. We will 
focus on most widely used Gabor features - convolution 
with multi-resolution structure of Gabor filters of several 
frequencies and orientations. 

A straight forward implementation of Gabor features 
extraction would be an image convolution with Gabor 
filters in spatial domain. It can be improved by an order of 
magnitude using the separability property of 2D filters [10] 
or symmetry / anti-symmetry / wavelet characteristics for 
special cases of Gabor filters orientations and frequencies 
[11]. Several schemas of calculating Gabor features more 
effectively by approximations were presented: effective 
area of filters and Laplacian pyramid [12], recursive Gabor 
[13], decomposition into Gaussians [14]. However, the 
most effective Gabor features extraction at every location 
in the image is done by using Fast Fourier Transform 
(FFT) for image convolution with Gabor filters in 
frequency domain. Several works in pattern recognition 
[15,16] use Gabor features that are calculated at some 
regular grid but not every pixel of the image. Motivated by 
that we will explore how a structure of regular grid and 
generalized separability of Gabor filter can be exploited to 
speed up the calculation of Gabor features almost to the 
speed of FFT without loss of precision. The main 
contributions of this article are: 

1. Exploitation of the structure of regular grid, 
symmetry and generalized separability of Gabor filter to 
accelerate Gabor features calculation in spatial domain. 

2. Calculation of whole Gabor feature at once. 
3. Detailed comparison to direct convolution, 

proposed convolution, and convolution in frequency 
domain. 

Gabor Filter 

Following [17], we will assume complex-valued 2D 
Gabor filter as product of isotropic Gaussian and complex 
exponential plane wave: 
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where ,sincos θθθ yxx +=  cossin θθθ yxy +−=   
θ ∈ [0…π) – filter orientation; f  – filter frequency; σ  – a 
standard deviation of Gaussian function; ϕ ∈ {0, π / 2} 
corresponds to real and imaginary parts of Gabor filter. 

We will show the Gabor filter of any orientation θ 
and any frequency f becomes linearly-multi-separable 
(formal definition will be presented later) and we will 
show how this and the filter symmetry properties can be 
exploited for accelerated calculation of Gabor features. 

Effective Filter Envelope 

Effective filter envelope corresponds to the filter are 
with significant coefficients [12]. Filter coefficients outside 
that area can be discarded depending on what accuracy and 
speed ratio is needed. Although, speed of convolution in 
frequency domain is not affected by smaller filter size1

Convolution 

, it 
can significantly reduce computational complexity, when 
filtering is performed in spatial domain, and memory 
consumptions for storage of filters. Effective filter 
envelope of Gabor filter can be calculated directly from 
standard deviation of approximately normally distributed 
data. For all further experiments doubled standard 
deviation will be used as the radius of effective filter 
envelope retaining approximately 95% energy of the filter. 

Direct convolution of a linear MxM (where 
M = 2m + 1) 2D filter C and image I in spatial domain is 
defined as 

                                                           
1 Here we neglect the fact that convolution by FFT without a signal 

wraparound requires complementing of the longer signal by half of the shorter signal 
with zeros. 
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which requires O(M2) (operations) calculations to calculate 
convolution at one point of the image and O(M2N2) 
(operations) calculations for convolution with the whole 
NxN image. Linear 2D filter is said to be separable if it can 
be decomposed as a product of two one-dimensional 
signals filters. Convolution of whole image with separable 
2D filter can be speeded up by convolving each row of the 
image with the horizontal projection of filter, resulting in 
the intermediate image. Then, convolving each column of 
the intermediate image with the vertical projection of filter. 
The resulting image is identical to direct convolution, no 
matter which step (horizontal or vertical) is performed 
first, and requires O(MN2) calculations. We will generalize 
notion of separable 2D filter that will be applicable for our 
complex valued Gabor filter. 

Definition 1. It is said that complex-valued 2D filter 
C(x, y) is linearly multi-separable if for some finite 1K and 
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where )(xa j
k and )(yb j

k – real-valued functions. Sum 

21 KK +  is referred as order of multi-separability. 
Note that NxN image filtration with linearly multi-

separable filter would require 
2

21
2

21 )2()(2 NKKMNKK −+++  arithmetic operations. 
We will show below that the Gabor filter (1) is multi-
separable of order 4. The real part of the filter (1) can be 
decomposed in 
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Similarly, the imaginary part of Gabor filter can be 
decomposed in 
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Combining (3) and (5) we have that complex Gabor 
filter is linearly multi-separable of order 4. Using 
additional benefits of symmetry of (3) and (5) expressions 
we can reduce the filtration complexity 8MN2 + 6N2 to 
6MN2 + 2N2. The last significantly improves complexity of 
direct convolution consisting of 4M2N2 arithmetic 
operations. 

Convolution H in frequency domain is done by 
converting image I to frequency domain with FFT, 
multiplying by a converted to frequency domain filter C 
and converting back to the spatial domain with IFFT: 

)).()(( FFFTIFFTIFFTH ⋅=                (7) 
This approach gives a periodic version of 

convolution. To obtain non-periodic convolution, the 
approach of filtering in frequency domain requires a 
modification involving an additional complexity. For the 
simplicity of analysis we will restrict ourselves on periodic 
version of convolution. Computational complexity of FFT, 
as well as IFFT, is O(N2logN), however the lowest bound 
of the exact count of arithmetic operations of 1D FFT 
(split-radix FFT algorithm [18]) is 4Nlog2N – 6N + 8 real 
additions and multiplications2

( ) ( ) ( ) ( )( ).2,,,
222 sincos22 θθπσπσθ fvfuefvu −+−−=Γ

 and applies only for N a 
power of two greater than 1. Since complexity of 
convolution in frequency domain does not depend on filter 
size (if filter is smaller than the whole image) and complex 
Gabor filter can be computed directly in frequency domain 
by 

   (8) 

Arithmetic complexity of convolution with complex 
Gabor filter is 4N2log2N - 4N2+8N (one IFFT of 2D signal 
plus one complex multiplication in frequency domain, if 
image and filter are already in frequency domain3

Multi-resolution and Multi-orientation 

). 

The most attractive property of Gabor feature – 
orientation and scale semi-invariance – is achieved by 
using Gabor filters of many different orientations and 
scales which describe local structure of the image. In [12], 
Laplacian pyramid of images for faster calculation of 
multi-resolution Gabor feature is suggested. However, 
speed improvement comes with several drawbacks, and 
once again works with only very special case of Gabor 
features: 

1. Pyramid of images can be effectively constructed 
only for integer scaling factors, downscaling by real factors 
creates aliasing effect and should be avoided. 

2. Responses of Gabor filters are approximated and, 
additionally, special care should be taken to upscale the 

                                                           
2 Recently it was improved to NN 29

34 log≈  [19]. 
3 The complexity of image conversion to frequency domain is not added here 

because further we analyze a Gabor feature (which is composed of several Gabor 
filters) calculation time. 
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responses of low frequency filters back to the higher 
resolution. 

We will focus on calculating exact values of Gabor 
filters of equally distributed directions (covering the 
[ ]π0  range with a constant step) which are not limited to 
particular scales that are convenient for constructing 
Laplacian pyramid of images. Authors of [11] try to 
calculate convolution with several Gabor filters at once, 
but is tuned to orientations with { }4/3,4/2,4/,0 πππθ ∈  
and 3 scales (starting from 3×3 discrete filter and scaling it 
by a factor of 2). Most often each Gabor filter is dealt with 
independently in other works. One of the main 
contributions of the proposed method is calculating the 
whole Gabor feature at once in spatial domain, including 
convolution with Gabor filters of all equally distributed 
directions and any number of scales. 

Regular Grid 

A regular grid is used in some pattern recognition 
tasks like [15, 16]. Proposed optimizations are most 
effective if Gabor features are calculated at adjacent points 
which are closer than half of the largest Gabor filter. 
Several examples of regular grids are shown in Fig. 1 (they 
are linearly separable into horizontal and vertical parts). 

  
Fig. 1. Examples of regular grids in the 128x128 image 

Implementation 

A classical example is a vector of responses got from 
image convolution with Gabor filters of 8 orientations and 
5 frequencies homogeneously distributed in a frequency 
band [5]. Number of frequencies is not limited by proposed 
implementation, however number of orientations should be 
even to use full ensemble of optimizations. On the other 
hand, this limitation is not exceptional because almost 
every application of Gabor features in the literature uses 
even number of orientations. In previous section we 
showed that every Gabor filter with isotropic Gaussian part 
is multi-separable of order 4 and this can be exploited to 
speed up the convolution in spatial domain. Further we 
will show how symmetry and anti-symmetry of Gabor 
filter as well as Gabor feature can be used for speeding up 
the convolution at any location in the image up to four 
times. 

Symmetry (Anti-symmetry) of Gabor Filter 

Real and imaginary parts of Gabor filters are 
symmetric and anti-symmetric – they have the same 
modulus at locations that components have equal absolute 
values (Fig. 2). 

 
a)                                               b) 

 
c)                                              d) 

Fig. 2. Gh1 (a), Gh2 (b), Gv1 (c) and Gv2 (d) parts of Gabor filter 
with orientation 16/πθ =  
 

Direct convolution of 1D signal I and filter 
F = (f0, …, fM), where fi = fM - i, at location x (which 
requires M + 1 multiplications and M additions) 
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can be replaced by symmetric (or anti-symmetric if sums 
of signal values will be replaced by differences) version 
(which requires m + 1 multiplications and M additions): 
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Although, in [12] authors state that this will not lead 
to any improvement on modern computers because 
multiplication is not an expensive operation, symmetric 
convolution requires 25% less arithmetic operations which 
can reduce convolution time with one filter by one fourth. 
Additionally, when symmetric convolution is used to 
calculate Gabor feature, each Gabor filter can use the same 
sums (or differences) of signal and they can be 
precalculated only once for the largest filter. Another 25% 
of arithmetic operations can be saved for all but one largest 
filter. 

Symmetry (Anti-symmetry) of Gabor Feature 

One more symmetry (anti-symmetry) exists in Gabor 
feature between filters of same scale but different 
orientations. If D orientations are used in Gabor feature, 
full convolution must be performed only with filters of 

12 +D  orientations that fall in the range [ ]4,,0 π . The 

remaining filters are symmetric (anti-symmetric) and their 
responses can be calculated by reusing previously 
calculated filters responses as shown below for Gh1 filter 
part: 
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Similarly, 

( ) ( )
( ) ( )
( ) ( ).,,,,

,,,,,
,,,,,

0202

0101

0202

fyGfyG
fyGfyG

fxGfxG

vv

vv

hh

θθπ
θθπ
θθπ

=−
=−
−=−

               

(12)

 
Responses of corresponding Gabor filters can be 

calculated by: 
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Using symmetry along orientations 12 −
D  of 

orientations won’t be recalculated and will save almost 
50% arithmetic operations if more than two orientations 
will be used. 

Filtering at Regular Grid 

Image convolution with a linear separable 2D filter 
can be optimized by an order of magnitude exploiting the 
filter multi-separability property. Actually, convolution of 
the whole image is the same as convolution at the dense 
regular grid which has a distance of one pixel between the 
adjacent grid positions. Same optimizations are possible if 
the distance between adjacent grid positions is greater than 
one pixel (but not greater than the length of the filter). 
Often there is no need to have Gabor response at every 
location in the image but calculating direct convolution is 
time consuming and FFT must be used. 

Filtering Near Image Boundary 

Several practices how filtering near image boundaries 
could be dealt with, when part of the filter slips outside the 
image, come from image processing: 

1. Extend the image with a constant (possibly zero) 
intensity value. 

2. Extend the image periodically or by mirroring it at 
the boundaries. 

3. Normalize the response of convolution by sum of 
values from the filter part which does not slip outside the 
image. 

Discrete Gabor filters are constructed to have a DC 
free property, i. e. sum of filter coefficients equals to zero. 
When part of the filter slips outside the image, Gabor filter 

loses the DC free property and its response can change 
unacceptably. Filter response normalization is necessary 
and can be done by subtracting the DC value. We calculate 
a DC value by applying integral image technique which 
enables rapid calculation of sums of values in any 
rectangular region in a constant time. During our 
experiments we noticed that such approach can 
significantly improve Gabor filter response stability near 
image boundary even when up to 45% of the filter is 
outside the image and is compensated by DC value (Fig. 
4). 

 
Fig. 3. One specific Gabor response when part of the image under 
the filter is not available (with and without filter response 
normalization). This simulates filter response stability near image 
boundary 

Evaluation 

First of all, arithmetic complexity of the proposed 
method is compared to direct and FFT based methods by 
calculating number of arithmetic operations required to 
perform Gabor features extraction at regular grids of 
different sizes. Regular grids were chosen in the following 
order: each point, every second point, every third point, …, 
one center point in the image. The proposed method should 
always be faster than direct calculation of Gabor features 
and should be faster than convolution in frequency domain 
when Gabor features are needed only on every second 
point of the image (Fig. 4). 

 
Fig. 4. Number of arithmetic operations required for the 
evaluated methods to calculate Gabor features (9 scales, 16 
orientations) at regular grids of different sizes on 256x256 image 

Complexity of convolution in frequency domain was 
calculated according to the split-radix FFT method that is 
applicable only to the signals of power-of-two length. In 
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practice its complexity heavily depends on effectiveness of 
implementation. For further experiments one of the most 
efficient publicly available FFT software – FFTW library 
[20] will be used. Results of practical experiment with the 
same Gabor features, image size and regular girds that 
were used in theoretical evaluation can be seen in Fig. 5. 
Different time for the same number of points for the direct 
Gabor features calculations appear from the regular grids 
where the same points are situated further or closer to 
image boundary. Gabor filters from the features that are 
calculated closer to the image boundary slip outside the 
image and are calculated faster because parts of them are 
not used in convolution. However this does not affect the 
speed of the proposed method because the problem of 
image boundary is solved at the precalculation of signal 
sums (and differences) step. One more difference from 
theoretical evaluation of complexity is the form of the 
proposed method curve. This can be explained by the fact 
that arithmetic complexity was calculated without taking 
into account (actually, taking the worst case) how Gabor 
filters overlap in the regular grid, i. e. how close adjacent 
points in the regular grid are. 

 
Fig. 5. Time (in seconds) required for the evaluated methods to 
calculate Gabor features (9 scales, 16 orientations) at regular 
grids of different sizes on 256x256 image 

 
Fig. 6. Time (in seconds) required for the evaluated methods to 
calculate Gabor features (9 scales, 16 orientations) at regular 
grids of different sizes on 191x191 image 

Images with dimensions of power-of-two are very 
convenient for the FFT. To show the efficiency of the 
proposed method the same experiment was performed with 
image of 191x191 pixels, results can be seen in Fig. 6. 

Now the proposed method outperforms convolution in 
frequency domain by 10% even at calculating Gabor 
features at each point of the image (though the difference is 
only marginal in logarithmic scale). 

Similar experiments were performed with different 
number of scales (3, 5, 9) and orientations (4, 8, 16, 32) in 
Gabor features and different sizes of images (128x128, 
191x191, 256x256). The results are almost identical to 
those that were presented above. 

Conclusion 

The regular grid together with Gabor filters symmetry 
(anti-symmetry) and Gabor features symmetry (anti-
symmetry) along directions were successfully used to 
improve Gabor features calculation time. The problem of 
filtering near image boundary was also addressed and 
efficient solution was proposed. After the detailed 
comparison of the proposed method with direct and FFT 
based calculation of Gabor features the following 
conclusions can be drawn from the evaluation results: 

1. Proposed method is always faster than the direct 
convolution. 

2. Proposed method is faster than convolution in 
frequency domain if Gabor features are required at every 
second (sometimes every third) point of the image and 
image dimensions are convenient for FFT. 

3. Proposed method is always faster than convolution in 
frequency domain if image dimensions are not convenient 
for FFT. 

Several approaches of optimizations were left out of 
the scope of this article and will be analyzed in our future 
works. Firstly, it is exploiting Gabor wavelet property, i. e. 
different Gabor scales are generated from one mother 
wavelet. Secondly, modern processors are able to do 
several arithmetic operations in parallel and this can be 
used for parallel version of the proposed method. And 
lastly, various approximations of Gabor filters could be 
used to speed up features extraction with small errors in 
Gabor responses. If the errors are too small to influence the 
quality of further steps in the algorithms, approximations 
should be definitely used. 
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A lot of computer vision tasks are tried to solve by using Gabor features that proved to be very effective feature descriptors. One of 
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как это можно сделать в пространственной области эффективнее, чем в частотной области, если использовать обобщённую 
отделимость, симметрию и антисимметрию фильтров Габора. Ил. 6, библ. 20 (на английском языке; рефераты на английском, 
русском и литовском яз.). 
 
 
J. Kranauskas. Ypač spartus Gaboro požymių skaičiavimas erdvinėje srityje // Elektronika ir elektrotechnika. – Kaunas: 
Technologija, 2010. – Nr. 1(97). – P. 39–44. 

Gaboro požymiai yra itin efektyvūs požymių deskriptoriai, todėl dažnai naudojami kompiuterinės regos algoritmuose. Taikyti 
Gaboro požymius praktiniams uždaviniams spręsti yra brangu, nes dėl labai sudėtingų skaičiavimų negalima kurti realiu laiku veikiančių 
sistemų. Sparčiausiai Gaboro požymiai apskaičiuojami dažnių srityje. Taigi Gaboro požymių atsakai gaunami kiekviename paveiksliuko 
taške ir daugiausia dėl to tai vis dar yra skaičiavimų reikalaujantis sprendimas, kai Gaboro požymius sudaro dešimtys Gaboro filtrų. 
Šiame straipsnyje pristatomas naujas būdas skaičiuoti reguliariai paveiksliuke išsidėsčiusius Gaboro požymius bei parodoma, kaip, 
naudojant Gaboro filtrų apibendrintąjį atskiriamumą, simetriją ir antisimetriją, ypač efektyviai tai galima atlikti erdvinėje srityje. Il. 6, 
bibl. 20 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 
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