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Introduction

Gabor filters have been widely used in constructing
various Gabor features for different computer vision tasks:
competitive texture classification, segmentation and
synthesis, fast and accurate object detection and tracking
[1, 2], one of most precise biometrics iris recognition [3],
and especially face recognition [4-8]. Gabor features are
proved to perform very well because of their properties
like rotation, scale, translation and uniform lighting semi-
invariance [9]. On the other hand, computational
complexity still limits their application in practice. We will
focus on most widely used Gabor features - convolution
with multi-resolution structure of Gabor filters of several
frequencies and orientations.

A straight forward implementation of Gabor features
extraction would be an image convolution with Gabor
filters in spatial domain. It can be improved by an order of
magnitude using the separability property of 2D filters [10]
or symmetry / anti-symmetry / wavelet characteristics for
special cases of Gabor filters orientations and frequencies
[11]. Several schemas of calculating Gabor features more
effectively by approximations were presented: effective
area of filters and Laplacian pyramid [12], recursive Gabor
[13], decomposition into Gaussians [14]. However, the
most effective Gabor features extraction at every location
in the image is done by using Fast Fourier Transform
(FFT) for image convolution with Gabor filters in
frequency domain. Several works in pattern recognition
[15,16] use Gabor features that are calculated at some
regular grid but not every pixel of the image. Motivated by
that we will explore how a structure of regular grid and
generalized separability of Gabor filter can be exploited to
speed up the calculation of Gabor features almost to the
speed of FFT without loss of precision. The main
contributions of this article are:

1. Exploitation of the structure of regular grid,
symmetry and generalized separability of Gabor filter to
accelerate Gabor features calculation in spatial domain.

2. Calculation of whole Gabor feature at once.

3. Detailed comparison to direct convolution,
proposed convolution, and convolution in frequency
domain.

Gabor Filter

Following [17], we will assume complex-valued 2D
Gabor filter as product of isotropic Gaussian and complex
exponential plane wave:
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6 e [0...m) — filter orientation; f — filter frequency; o — a
standard deviation of Gaussian function; ¢ e {0, n/2}
corresponds to real and imaginary parts of Gabor filter.

We will show the Gabor filter of any orientation 6
and any frequency f becomes linearly-multi-separable
(formal definition will be presented later) and we will
show how this and the filter symmetry properties can be
exploited for accelerated calculation of Gabor features.

Effective Filter Envelope

Effective filter envelope corresponds to the filter are
with significant coefficients [12]. Filter coefficients outside
that area can be discarded depending on what accuracy and
speed ratio is needed. Although, speed of convolution in
frequency domain is not affected by smaller filter size®, it
can significantly reduce computational complexity, when
filtering is performed in spatial domain, and memory
consumptions for storage of filters. Effective filter
envelope of Gabor filter can be calculated directly from
standard deviation of approximately normally distributed
data. For all further experiments doubled standard
deviation will be used as the radius of effective filter
envelope retaining approximately 95% energy of the filter.

Convolution

Direct convolution of a linear MxM (where
M =2m + 1) 2D filter C and image | in spatial domain is
defined as

! Here we neglect the fact that convolution by FFT without a signal
wraparound requires complementing of the longer signal by half of the shorter signal
with zeros.
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which requires O(M?) (operations) calculations to calculate
convolution at one point of the image and O(M?N?
(operations) calculations for convolution with the whole
NXN image. Linear 2D filter is said to be separable if it can
be decomposed as a product of two one-dimensional
signals filters. Convolution of whole image with separable
2D filter can be speeded up by convolving each row of the
image with the horizontal projection of filter, resulting in
the intermediate image. Then, convolving each column of
the intermediate image with the vertical projection of filter.
The resulting image is identical to direct convolution, no
matter which step (horizontal or vertical) is performed
first, and requires O(MN?) calculations. We will generalize
notion of separable 2D filter that will be applicable for our
complex valued Gabor filter.

Definition 1. It is said that complex-valued 2D filter
C(x, y) is linearly multi-separable if for some finite K;and
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where a)(x)and b’(y)- real-valued functions. Sum

Ky + K, is referred as order of multi-separability.

Note that NxN image filtration with linearly multi-
separable filter would require
2(Kq+ KZ)MN2 +(Ki+Ky—-2)N 2 arithmetic operations.
We will show below that the Gabor filter (1) is multi-

separable of order 4. The real part of the filter (1) can be
decomposed in
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Similarly, the imaginary part of Gabor filter can be
decomposed in

G(x,y,0, f)=Gna(x.0, )5a(y. 0, )+
+Gp(x, 6, T)Gy2(y, 0, T) (6)

Combining (3) and (5) we have that complex Gabor
filter is linearly multi-separable of order 4. Using
additional benefits of symmetry of (3) and (5) expressions
we can reduce the filtration complexity 8MN?+ 6N? to
6MN? + 2N?. The last significantly improves complexity of
direct convolution consisting of 4M?N? arithmetic
operations.

Convolution H in frequency domain is done by
converting image | to frequency domain with FFT,
multiplying by a converted to frequency domain filter C
and converting back to the spatial domain with IFFT:

H = IFFT(FFT(l)- FFT(F)). @)

This approach gives a periodic version of
convolution. To obtain non-periodic convolution, the
approach of filtering in frequency domain requires a
modification involving an additional complexity. For the
simplicity of analysis we will restrict ourselves on periodic
version of convolution. Computational complexity of FFT,
as well as IFFT, is O(N?logN), however the lowest bound
of the exact count of arithmetic operations of 1D FFT
(split-radix FFT algorithm [18]) is 4Nlog,N — 6N + 8 real
additions and multiplications? and applies only for N a
power of two greater than 1. Since complexity of
convolution in frequency domain does not depend on filter
size (if filter is smaller than the whole image) and complex
Gabor filter can be computed directly in frequency domain

by
T(uv,6, )= 2m_ze—(zw)z ((u—f c0s0)? +(v—f sin 9)? ) (8)

Arithmetic complexity of convolution with complex
Gabor filter is 4Nlog,N - 4N*+8N (one IFFT of 2D signal
plus one complex multiplication in frequency domain, if
image and filter are already in frequency domain®).

Multi-resolution and Multi-orientation

The most attractive property of Gabor feature —
orientation and scale semi-invariance — is achieved by
using Gabor filters of many different orientations and
scales which describe local structure of the image. In [12],
Laplacian pyramid of images for faster calculation of
multi-resolution Gabor feature is suggested. However,
speed improvement comes with several drawbacks, and
once again works with only very special case of Gabor
features:

1. Pyramid of images can be effectively constructed
only for integer scaling factors, downscaling by real factors
creates aliasing effect and should be avoided.

2. Responses of Gabor filters are approximated and,
additionally, special care should be taken to upscale the

2 Recently it was improved to ~ %4 Nlog, N [19].

% The complexity of image conversion to frequency domain is not added here
because further we analyze a Gabor feature (which is composed of several Gabor
filters) calculation time.
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responses of low frequency filters back to the higher
resolution.

We will focus on calculating exact values of Gabor
filters of equally distributed directions (covering the
[0...7] range with a constant step) which are not limited to

particular scales that are convenient for constructing
Laplacian pyramid of images. Authors of [11] try to
calculate convolution with several Gabor filters at once,
but is tuned to orientations with ¢ < {0,7/4,27/4,37 14}

and 3 scales (starting from 3x3 discrete filter and scaling it
by a factor of 2). Most often each Gabor filter is dealt with
independently in other works. One of the main
contributions of the proposed method is calculating the
whole Gabor feature at once in spatial domain, including
convolution with Gabor filters of all equally distributed
directions and any number of scales.

Regular Grid

A regular grid is used in some pattern recognition
tasks like [15, 16]. Proposed optimizations are most
effective if Gabor features are calculated at adjacent points
which are closer than half of the largest Gabor filter.
Several examples of regular grids are shown in Fig. 1 (they
are linearly separable into horizontal and vertical parts).

Fig. 1. Examples of regular grids in the 128x128 image
Implementation

A classical example is a vector of responses got from
image convolution with Gabor filters of 8 orientations and
5 frequencies homogeneously distributed in a frequency
band [5]. Number of frequencies is not limited by proposed
implementation, however number of orientations should be
even to use full ensemble of optimizations. On the other
hand, this limitation is not exceptional because almost
every application of Gabor features in the literature uses
even number of orientations. In previous section we
showed that every Gabor filter with isotropic Gaussian part
is multi-separable of order 4 and this can be exploited to
speed up the convolution in spatial domain. Further we
will show how symmetry and anti-symmetry of Gabor
filter as well as Gabor feature can be used for speeding up
the convolution at any location in the image up to four
times.

Symmetry (Anti-symmetry) of Gabor Filter

Real and imaginary parts of Gabor filters are
symmetric and anti-symmetric — they have the same
modulus at locations that components have equal absolute
values (Fig. 2).
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Fig. 2. Gy (@), Gy (b), Gy1 (€) and G, (d) parts of Gabor filter

with orientation 8 = 7 /16
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Direct convolution of 1D signal 1 and filter
F=(f, ..., fu), where fi=fy,_;, at location x (which
requires M + 1 multiplications and M additions)

H(x) = fol (x—m)+ f,1(x—m+1)+
+oo+ fy H(x+m=1)+ f, 1(x+m) 9)

can be replaced by symmetric (or anti-symmetric if sums
of signal values will be replaced by differences) version
(which requires m + 1 multiplications and M additions):

He(X)= fraal )+ fr(1(x=2)+ 1(x +1))+
+o4 fo(1(x=m)+ 1(x+m)) (10)

Although, in [12] authors state that this will not lead
to any improvement on modern computers because
multiplication is not an expensive operation, symmetric
convolution requires 25% less arithmetic operations which
can reduce convolution time with one filter by one fourth.
Additionally, when symmetric convolution is used to
calculate Gabor feature, each Gabor filter can use the same
sums (or differences) of signal and they can be
precalculated only once for the largest filter. Another 25%
of arithmetic operations can be saved for all but one largest
filter.

Symmetry (Anti-symmetry) of Gabor Feature

One more symmetry (anti-symmetry) exists in Gabor
feature between filters of same scale but different
orientations. If D orientations are used in Gabor feature,
full convolution must be performed only with filters of

%4—1 orientations that fall in the range IO%J The
remaining filters are symmetric (anti-symmetric) and their
responses can be calculated by reusing previously

calculated filters responses as shown below for Gy, filter
part:
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Responses of corresponding Gabor filters can be
calculated by:

G(x,y, 70, fp,0)=
= Ghl(x, 0, fy )le(y, 0, f0)+

+Gna(x,0, fo)Gy2(y. 0, fo ) (13)
G(x, y,w—0, fo,%):

=—Gna(x. 0, fo)Gua(y. 6, fo)+

+ Gy (x,0, fg)Gy2(y. 0, fo). (14)

; ; ; D
Using symmetry along orientations - —1 of

orientations won’t be recalculated and will save almost
50% arithmetic operations if more than two orientations
will be used.

Filtering at Regular Grid

Image convolution with a linear separable 2D filter
can be optimized by an order of magnitude exploiting the
filter multi-separability property. Actually, convolution of
the whole image is the same as convolution at the dense
regular grid which has a distance of one pixel between the
adjacent grid positions. Same optimizations are possible if
the distance between adjacent grid positions is greater than
one pixel (but not greater than the length of the filter).
Often there is no need to have Gabor response at every
location in the image but calculating direct convolution is
time consuming and FFT must be used.

Filtering Near Image Boundary

Several practices how filtering near image boundaries
could be dealt with, when part of the filter slips outside the
image, come from image processing:

1. Extend the image with a constant (possibly zero)
intensity value.

2. Extend the image periodically or by mirroring it at
the boundaries.

3. Normalize the response of convolution by sum of
values from the filter part which does not slip outside the
image.

Discrete Gabor filters are constructed to have a DC
free property, i. e. sum of filter coefficients equals to zero.
When part of the filter slips outside the image, Gabor filter

loses the DC free property and its response can change
unacceptably. Filter response normalization is necessary
and can be done by subtracting the DC value. We calculate
a DC value by applying integral image technique which
enables rapid calculation of sums of values in any
rectangular region in a constant time. During our
experiments we noticed that such approach can
significantly improve Gabor filter response stability near
image boundary even when up to 45% of the filter is
outside the image and is compensated by DC value (Fig.
4).

— image extended with 0
----- narmalized fiter

0.0

filter response
=

.02

9 18 27 36 45
part of filter outside the image (%)
Fig. 3. One specific Gabor response when part of the image under
the filter is not available (with and without filter response
normalization). This simulates filter response stability near image
boundary

Evaluation

First of all, arithmetic complexity of the proposed
method is compared to direct and FFT based methods by
calculating number of arithmetic operations required to
perform Gabor features extraction at regular grids of
different sizes. Regular grids were chosen in the following
order: each point, every second point, every third point, ...,
one center point in the image. The proposed method should
always be faster than direct calculation of Gabor features
and should be faster than convolution in frequency domain
when Gabor features are needed only on every second
point of the image (Fig. 4).
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Fig. 4. Number of arithmetic operations required for the
evaluated methods to calculate Gabor features (9 scales, 16
orientations) at regular grids of different sizes on 256x256 image

Complexity of convolution in frequency domain was
calculated according to the split-radix FFT method that is
applicable only to the signals of power-of-two length. In
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practice its complexity heavily depends on effectiveness of
implementation. For further experiments one of the most
efficient publicly available FFT software — FFTW library
[20] will be used. Results of practical experiment with the
same Gabor features, image size and regular girds that
were used in theoretical evaluation can be seen in Fig. 5.
Different time for the same number of points for the direct
Gabor features calculations appear from the regular grids
where the same points are situated further or closer to
image boundary. Gabor filters from the features that are
calculated closer to the image boundary slip outside the
image and are calculated faster because parts of them are
not used in convolution. However this does not affect the
speed of the proposed method because the problem of
image boundary is solved at the precalculation of signal
sums (and differences) step. One more difference from
theoretical evaluation of complexity is the form of the
proposed method curve. This can be explained by the fact
that arithmetic complexity was calculated without taking
into account (actually, taking the worst case) how Gabor
filters overlap in the regular grid, i. e. how close adjacent
points in the regular grid are.

1000.0000

—+— proposed ]
100.0000 -—— _m— direct w

_ - fit -
2 10.0000 == - )
& o
§ __'_".- i

1.0000 o
‘GET x ” M'w
E om0 I = M.’

P o
0.0100 e

0.0010

1 10 100 1000 10000 100000

number of points in the grid

Fig. 5. Time (in seconds) required for the evaluated methods to
calculate Gabor features (9 scales, 16 orientations) at regular
grids of different sizes on 256x256 image
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Fig. 6. Time (in seconds) required for the evaluated methods to
calculate Gabor features (9 scales, 16 orientations) at regular
grids of different sizes on 191x191 image

Images with dimensions of power-of-two are very
convenient for the FFT. To show the efficiency of the
proposed method the same experiment was performed with
image of 191x191 pixels, results can be seen in Fig. 6.

Now the proposed method outperforms convolution in
frequency domain by 10% even at calculating Gabor
features at each point of the image (though the difference is
only marginal in logarithmic scale).

Similar experiments were performed with different
number of scales (3, 5, 9) and orientations (4, 8, 16, 32) in
Gabor features and different sizes of images (128x128,
191x191, 256x256). The results are almost identical to
those that were presented above.

Conclusion

The regular grid together with Gabor filters symmetry
(anti-symmetry) and Gabor features symmetry (anti-
symmetry) along directions were successfully used to
improve Gabor features calculation time. The problem of
filtering near image boundary was also addressed and
efficient solution was proposed. After the detailed
comparison of the proposed method with direct and FFT
based calculation of Gabor features the following
conclusions can be drawn from the evaluation results:

1. Proposed method is always faster than the direct
convolution.

2. Proposed method is faster than convolution in
frequency domain if Gabor features are required at every
second (sometimes every third) point of the image and
image dimensions are convenient for FFT.

3. Proposed method is always faster than convolution in
frequency domain if image dimensions are not convenient
for FFT.

Several approaches of optimizations were left out of
the scope of this article and will be analyzed in our future
works. Firstly, it is exploiting Gabor wavelet property, i. e.
different Gabor scales are generated from one mother
wavelet. Secondly, modern processors are able to do
several arithmetic operations in parallel and this can be
used for parallel version of the proposed method. And
lastly, various approximations of Gabor filters could be
used to speed up features extraction with small errors in
Gabor responses. If the errors are too small to influence the
quality of further steps in the algorithms, approximations
should be definitely used.
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J. Kranauskas. Accelerated Calculation of Gabor Features in Spatial Domain // Electronics and Electrical Engineering. —
Kaunas: Technologija, 2010. — No. 1(97). — P. 39-44.

A lot of computer vision tasks are tried to solve by using Gabor features that proved to be very effective feature descriptors. One of
the main drawbacks of using Gabor features in real-time practical applications is computational heaviness. Convolution with Gabor
filters in frequency domain generates responses of Gabor features at each position in the image and is time consuming operation when
Gabor feature consists of tens of Gabor filters. In this article, we introduce the concept of calculating Gabor features at regular grid in
the image and show how this together with a generalized separability, symmetry and anti-symmetry of Gabor filter can be exploited to
calculate Gabor features in spatial domain even faster than in frequency domain. Ill. 6, bibl.20 (in English; abstracts in English, Russian
and Lithuanian).

TO. Kpanayckac. YckopeHHbIii pacyer npu3HakoB I'aGopa B mpocTpaHCcTBeHHO# 06.1acTH // DJIEKTPOHUKA U 3J1eKTPOTEXHUKA. —
Kaynac: Texnomaorust, 2010. — Ne 1(97). — C. 39-44.

Ipn3naku ['abopa 4acTo HCIONMB3YIOT IS PElIeHHs 3aiady KOMIIBIOTEPHOTO 3pPEHUS, T. K. OHH OKa3aIUCh O4YeHb d()(QEKTUBHBIMU
JECKpUNTOpaMH TpH3HAKOB. CI0KHOCTh BBIYMCICHUS] — OJMH M3 TJIaBHBIX HEJOCTATKOB HCIIOJIb30BaHUS NpH3HaKoB ['abopa mis
pelIeHns] MPaKTHUECKUX 3aj1a4 peanbHoro BpeMenu. CeépTka ¢uubTpoB ['abopa B 4acTOTHOH 00NacTH FeHEPHPYET OTBET MPH3HAKOB
T'abopa B kaxn0i MO3UIMK U300paKeHHS U TpeOyeT MHOTO pacuéToB, Koraa npusHaku ['abopa cocTosaT u3 necatkoB ¢punbtpos ['abopa.
B s710i1 cTaTee mpeacTaBiseTcs HOBBIM crocol pacyéra B H300paXEHUH PETYISPHO PaclooXEeHHBIX MPU3HAKoB ['abopa, u mokasaHo,
KaK 5TO MOYKHO CZEJaTh B MPOCTPAHCTBEHHOH oOmactu 3(dekTuBHEE, YeM B YaCTOTHOH OOJIACTH, €CM HCIONb30BaTh 0000IMIEHHYIO
OTAENUMOCTb, CHMMETPHUIO ¥ aHTHCUMMeTpuio GuibTpoB ["abopa. M. 6, 6ubin. 20 (Ha aHIMIICKOM sI3BIKe; pedepaTsl Ha aHTIIMHCKOM,
PYCCKOM H JINTOBCKOM 513.).

J. Kranauskas. Ypa¢ spartus Gaboro poZymiy skaifiavimas erdvinéje srityje // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2010. — Nr. 1(97). — P. 39-44.

Gaboro poZzymiai yra itin efektyviis pozymiy deskriptoriai, todél daznai naudojami kompiuterinés regos algoritmuose. Taikyti
Gaboro poZzymius praktiniams uzdaviniams spresti yra brangu, nes dél labai sudétingy skai¢iavimy negalima kurti realiu laiku veikian¢iy
sistemy. Spar¢iausiai Gaboro pozymiai apskai¢iuojami dazniy srityje. Taigi Gaboro poZymiy atsakai gaunami kiekviename paveiksliuko
taske ir daugiausia dél to tai vis dar yra skaiGiavimy reikalaujantis sprendimas, kai Gaboro poZymius sudaro deSimtys Gaboro filtry.
Siame straipsnyje pristatomas naujas biidas skaiGiuoti reguliariai paveiksliuke issidés¢iusius Gaboro poZymius bei parodoma, kaip,
naudojant Gaboro filtry apibendrintaji atskiriamuma, simetrija ir antisimetrija, ypa¢ efektyviai tai galima atlikti erdvinéje srityje. Il. 6,
bibl. 20 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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