

53

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2010. No. 2(98)

ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

A Highly Interactive PC based Simulator Tool for Teaching
Microprocessor Architecture and Assembly Language Programming

N. Topaloglu
Department of Electronics and Computer Education, Technical Education Faculty, Gazi University, Teknikokullar, 06500,
Ankara, Turkey, tel.: +90 312 202 8575, e-mail: Nurettin@gazi.edu.tr
O. Gürdal
Department of Electrical Education, Technical Education Faculty, Gazi University, Teknikokullar, 06500, Ankara,
Turkey, tel.: +90 312 202 8548, e-mail: ogurdal@gazi.edu.tr

Introduction

The principal author of this paper has taught

advanced undergraduate level courses in computer
sciences for the past six years. Lab-Volt electromechanical
µP experimental sets [1] have been used for
microprocessor (µP) and computer architecture course at
the University of Gazi in Ankara, Turkey. As the number
of the students in classrooms is crowded and the number of
the sets is insufficient, the students are grouped into two
teams. Attempting to increase the number of the sets faced
cost considerations [2, 3]. The student having designed the
software component of a project may not be able to access
to the laboratory because of schedule/security difficulties
[3]. Like most computer system courses, Assembly
Language Programming (ALP) is being used as a vehicle
to understand the interrelationship and interactions
between the different components of a computer system
[4]. The programs in ALP written by the user are translated
to machine language by using a hand assembler or third
party assembler and are entered to experimental sets [5, 6].
During the execution of the programs, the students are
unable to see what steps are taken in the hardware units
and to comprehend the consequences [7-10]. This is
especially the case when teaching the matters regarding to
I/O operations. The students are also unable to get
sufficient help materials and supervision during the
laboratory sessions [2, 3, 11]. As a result, the success of
the students which has been monitored stayed below a
certain level. In proposing new methods when
teaching/learning µP architecture and ALP, the use of
computers and functional simulators as an assisting tool is
emphasized [4, 12]. The use of a simulator has two
advantages: the first one is to develop a suitable simulator
for desired µP except commercial and standard types, the
second one is to get good results by using simulator for
visualization and debugging. In addition, the programs

written for a processor are able to be executed in
computers having different types of processors [4]. This
enables the students to use the simulators at any
environment.

The µP simulators used presently either simulate a µP
other than the one available in the labs or are unable to
simulate all the functions of a µP [6], especially in case of
controlling peripheral devices which are connected to the
system. A PC and windows based simulator tool is
developed in parallel with the Lab-Volt electromechanical
µP experimental set with 6502 [13]. When developing this
simulator, curricula’s of computer science department at
the Technical Education Faculty, the University of Gazi in
Ankara, Turkey and the other appropriate departments
have been taken into consideration.

The simulator which has been used for two semesters
has attracted great attention by the students (and educators
as well). They preferred this software to the
electromechanical experimental sets. As a result, success
of the students monitored in µP course increased compared
to the previous years.

The µP simulator named as the VISUAL 6502 is
designed as having single main menu from which all the
functions are reachable. The C++ Builder Compiler has
been used in order to develop the simulator. It occupies
nearly 3.230 MB in hard disc and 10,764 KB in RAM. A
copy of the simulator software executable in all PCs can be
downloaded from the address given in the reference [14].

The System Components

By the VISUAL 6502 µP simulator tool, most of the

problems mentioned in the introduction section have been
eliminated. This virtual software with developed features is
useful tool for the related academical and industrial
departments.

The simulator consists of:

mailto:ogurdal@gazi.edu.tr�

54

a) Local editor: It is a simple word processor. No
other tool is needed to write assembly programs. They can
be saved with ‘ASM’ extension after being edited by the
user.

b) Assembler: The assembler has the ability to
process the whole instruction set of the 6502 (i.e. 56
instructions in total). The µP instruction set is translated
into the corresponding machine language. Upon the
execution of the program, a ‘*.HEX’ file containing
executable program codes, a ‘*.LST’ disassembler file
having the addresses corresponding to flags and codes used
in the program, and an empty ‘*.LOG’ file is created to be
used during the debugging process.

c) Debugger: The machine coded instructions within
the ‘*.HEX’ file can be executed by the debugger step by
step, at user selected speeds. The effect of the instructions
on the registers and memory areas can be monitored in a
window on the simulator so that the students are able to see
the effects of instructions on the registers, memory and
buses.

d) Animator: All the units of the processor normally
visible or invisible to the programmer with memory and
I/O units are animated in this section. How the command
codes and the data are processed is visually animated in
‘fetch’ and ‘execute’ steps and the students are provided to
understand the operation steps of the processor.

e) Virtual I/O Elements: This is where our
simulation platform differs from the rest. To teach µPs in
controlling mechanisms, initially some I/O elements are
embedded into the simulator which we plan to extend as
we evolve. An 8 bits switch set as input element, 8 bits
LED set as output element, two traffic lights and a 6 digits
7-segments display, a simple scope, and a step motor are
simulated at this stage.

Fig. 1. General view of the VISUAL 6502 µP simulator

In the simulator, while 56 commands and 13 different
addressing modes are being used, enhanced assembler
instructions are included as well. Errors encountered after
the translation of the program into machine codes by the
assembler are dealt with at this stage. Program errors can
be eliminated by two approaches: the first method is
elimination of syntax errors caused by misused

instructions. They may occur while assembling the
program and can be reached by clicking on the error code.
In the second method which corresponds to the logical
errors that may occur while debugging -the program- the
elimination of the errors depend on the experience of the
programmer.

The simulator with the simulated memory and I/O
systems forms the kernel of a simple computer. The
graphical output of the VISUAL 6502 µP simulator can be
seen in Fig.1.

Many functions of the simulator are reachable from
this window which is briefly described below;

1) Main Control Menu: This menu has six groups
consisting of

• buttons being used for editing processes,
• 256 bytes memory of which 64 KB is zero page

(data area), 256 bytes is first page (stack area) and the rest
is program page reserved for buttons dumping the screen
and a button is for closing memory windows and log
windows,

• main function starting buttons for the assembler,
the debugger and the animator,

• buttons for selecting the speed of the program, and
stopping and restarting program with memory erasing
buttons,

• buttons with which interrupt (IRQ, NMI and RES)
types are selectable,

• buttons with which virtual I/O elements are
selectable.

2) Editor Area Window: This area is used for writing
the programs. Addressing the labels which is impossible in
the electromechanical experimental set is implemented in
this area. The command being processed during execution
of the program is highlighted.

3) Machine Codes Window: After the program has
been written in the editor window, it is debugged. Codes,
addresses (effective address-offset) and labels of the
program can be seen in this area. Programs purged free
from instructions, mnemonics, operation codes and
operand areas are displayed in this window. The horizontal
stripe working in the editor window is also used here to
highlight the position and both highlights in two windows
work in parallel.

4) Register Window: 6502 processor has three
general (A, X and Y) and three private purpose (PC, SP
and flags) registers visible by the user. In addition to those,
the invisible registers of A and B port registers of 6520
PIA I/O integrated circuit (CRA/CRB, DDRA/DDRB and
ORA/ORB) are located in this window.

5) Memory Area: 64 KB memory area is divided into
three sections as data area, stack area and program area.
While the stack area shows 0100H and 01FFH address
contents, the data area shows 0000H and 0100H address
space and the program area shows 0200H and FFFFH
address space, and I/O addresses also take place in the
program area. Contents of the memory region selected in
the data and the program area can be displayed. In the
memory windows, hex contents and their ASCII
equivalents can be monitored synchronously.

55

Details of the Data Format

When writing a program in ALP, a data description

format has been developed. As the 6502 has an 8-bit
processor, a bit oriented data description has been
implemented taking this into consideration. As in
developed assemblers the data to be saved in the data area
in memory starts with a pointer instruction:

 .DATA $20 ;starting address of the TABLE
TABLE .BYTE 25,$FA,30,$71,127,$2E

 .BYTE 63,15,22,$45,29,00
 .DATA $30 ;starting address of the LIST

LIST .BYTE 10,$3B,$54,33, “COMPUTER”

The data can be put in the memory area with the
‘.DATA $address’ definition in more than one region. Here
‘.DATA’ definition is an instruction describing the starting
address of the data area. Data in specified areas can be
described as hexadecimal, decimal or string while being
represented in bit format.

The Representation of the Instructions

The instruction format is also “byte” oriented as in

data. 13 different addressing modes can be used with
instructions. Direct/indirect addressing, register/memory
operand, absolute/relative addressing and indexing
addressing modes can be selected. The addresses described
as labels, which can be used as label defined in operand
area and the labels can be given displacement values as
well.

Instructions in code area can be described with
addresses in enhanced assembler format:

.CODE $0200 ;starting address of the codes
START LDX #00
ADDT ADC TABLE,X
 INX
 CPX #05
 BNE ADDT
 STA $40
 BRK
 END ; end of the program

In the program, ‘.CODE $address’ shows the starting
address for the program while the END directive points the
end of the program. The usage of labels during the
program development stage ensures the relocation of the
addresses to be corrected after the modifications. This is
impossible when using the electromechanical experimental
sets.

Apart from the ordinary arithmetic, logic and jumping
operations, four general shifting and returning operation
instructions such as stack operations, sub-program calling
and reversing instructions can be used with their full
functions.

The Assembler

The students can easily be mistaken when calculating

offsets in defining zero page and absolute addresses in the

operand portion. The labels might be used instead of base
addresses at absolute and index addressing modes. Then
the labels might be converted to their relative addresses.
Relative addressing is an efficient way of readdressing and
is obtained by using the PC as ‘base’ address. Memory
address is computed by adding one of index register value
(X or Y). When formulated, content of the register is
represented by:

Effective address = base address + index register.

 .DATA $20
TABLE .BYTE 05,10,15,20,25
 .CODE $0200
 .
 ADC TABLE,X
 .
 END

In the instruction sequence above, the address
corresponding to the TABLE is 0020H. If X=03H then the
operand (effective address) of the ADD command will be
TABLE+X=0020H+03H=0023H. Here the address of the
TABLE label, 0020H is added to X register 03H from
which the effective address is obtained.

In the assembler, the ‘.BYTE’ definition is proposed
to give the students the ability to define data. By ‘.BYTE’
decimals, hexadecimals and strings can be defined.

 .DATA $40

TABLE .BYTE 10,255,00,45 ;decimal number definitions
 .BYTE $10,$FF,$5C,$22;hex. number definitions

MSG .BYTE “BY THE TIME” ; string definitions
MIXED .BYTE 25,$25, ”ELECTRONICS” ;complex
data definition

The ‘.DATA $address’ definition is sufficient to

define the data area. Except the data area, in the operand
area or in the definitions of the ‘DATA’ or the ‘CODE’
segment, the numerical values with ‘$’ mark are defined as
addresses. In the program, the ‘.CODE $address’
definition and the ‘END’ are the instructions showing the
starting point of the memory area to which program codes
are saved, and end of the program respectively.

Fig. 2. Editor and error messages window

By pressing the assembler button after the program

being edited in the editor;
1. a ‘.HEX’ file having hexadecimal format

command codes,

56

2. a ‘.LST’ file including program, machine and its
final target

3. a ‘.LOG’ file to be filled when the program is run
are automatically created.

If there are syntax errors in the program before the

creation of these files, a pop up window will appear under
the editor window showing error codes and their possible
meanings. When the user clicks the mouse on these error
codes, the cursor directly goes to the corresponding line
where the error is as seen in Fig. 2. This process is
extremely useful for the students when writing programs.

The Debugger

One of the common complaints of the students is that

the difficulty of understanding the way the data passes
through registers, memory or I/O units when the program
is running and monitor especially in logical processes how
the inter unit operation is effected in what cycle, and how
the synchronization is established in the case of I/O
operation. The highly interactive animation tools play a
vital role here: it animates all the events in a clear and
understandable way, enabling the student to see what
he/she actually meant by a specific I/O instruction. The
operations could easily be understood as the debugger is
able to show instantly which registers have and 64KB full
memory area in real time. Register/memory relationship
could easily be interpreted. The results of mathematical
and logical processes could be understood by examining
the bits of the flag register.

The errors in the program can also be monitored by
pressing the debug button, at user selectable speeds. A
sequence of specifications of the debugger as below
enables the students to find errors and to write more
effective and compact programs. The actions listed are
such as:

• Adding breakpoints,
• Use of IRQ, NMI and RES interrupts,
• Step by step program execution,
• Modifying register/memory contents,
• Memory dumping

Fig. 3. Program diary window

Apart from the specifications listed above, the record
of every instant of execution of the program is stored in a
‘.LOG’ file which enables the students to reiterate the
events developed in detail at home or school as seen in Fig.
3. In the debugger, during the execution of the program the

instruction being processed is highlighted in the editor and
the disassembler windows by a horizontal line. This
enables the program and its logic to be understood clearly.

The Animator

The animator animates the signalization of command

input/output between memory, I/O units and
communication paths together with the basic units
normally visible or invisible to the programmer. As seen in
Fig. 4, the animator clarifies all the events by giving the
ability to monitor what is going on within computer.

Fig. 4. The Animator window

The animator is highly user friendly with

specifications listed below:
• Presence and function of invisible registers like

MAR, MBR, DAR, DR and IR,
• Monitoring the command fetch/decode (t0), fetch

operand (t1-t2) and execute (t3) in a clear manner, the
command in this duration takes a time of 2 cycles min. and
7 cycles max,

• Interpretation of commands in RTL language. The
registers used by a ADC (ADC $40A5) command
addressed as absolute continuing four machine cycles are
seen in Fig.5,

• The relationships between processor, memory,
several I/O units and communication paths.

MAR PC, MBR M[MAR],
DARL MBR, PC PC+1,
CLK CLK+1

t1

MAR PC, MBR M[MAR],
DARH MBR, PC PC+1,
CLK CLK+1

t2

t3 MAR DAR, MBR M[MAR], DR MBR,
A A+DR+C, C Cout,
If (A(7)=1) then N=1 else N=0, If (A(7) <> C) then V=1 else V=0,
If (A=0) then Z=1 else Z=0,
CLK CLK+1, SC 0

MAR PC, MBR M[MAR]
IR MBR, PC PC+1
D0,...D255 Decode(IR), CLK CLK+1

t0
Fetch istruction code from

memory and decode it

Fetch first half of operand
(A5H-LSB of address) from

memory

Fetch second half of
operand (40H-MSB of
address) from memory

Execute

Fig. 5. Execution of ADC $40A5 command line in RTL
language

57

The Virtual I/O Elements

In learning assembly based programming, one of the

important subject is to control external peripheral elements
together with the ability to view interior events in µPs.
Students usually experiment difficulties in such cases
especially when executing the programs on hardware units.
This is mainly due to not having the ability of visualizing
the internals of the µP at the five of I/O events. Main task
of a µP is to control an element according to time intervals
specified. The students are required to know how a µP can
be used in real life events such as controlling some
peripheral elements. For this purpose, I/O elements like
virtual LED, switch, traffic lights and a 7- segments
display are simulated. Interactive peripheral displays
corresponding to some of these peripherals are given in
Fig. 6(a) and 6(b) respectively. For controlling these, 6520
PIA integrated circuit is selected as I/O unit.

Fig. 6(a). LED and microswitches group

Fig. 6(b). Traffic lights and 6 digits 7-segments display

The logical errors which may not be visible in the
programs can become apparent on visual elements. That’s
way the simulator has embedded I/O elements to give the
students the ability to design real life controlling

mechanisms, therefore to understand the way of that a µP
communicates with the peripheral devices.

Two groups of microswitches are selected as input
elements, and 2 groups of LEDs as output elements, traffic
lights and 6 digits 7-segments display, a simple scope and
a step motor are designed for 8 bits A and B ports of 6520
PIA I/O integrated circuit. The values on the displays can
be monitored as either decimal or binary numbers.

Conclusions

Today, the developments in computer resources and

multimedia tools are helpful in order to develop
educational software for every steps of the education.
Using these facilities, a highly interactive µP simulator
with the special focus on the internal details of the I/O
operations has been developed to provide the students
comprehend topics thought in µP programming courses in
a cheap and effective manner. The contribution of the
study towards the education can be listed as:

• All the data flow in the machine is visual and visible.
• There is no need to enter the machine codes manually

as the machine has a local assembler.
• Logical errors can be eliminated during the

development of the program. This saves time as reentering
the program is not needed.

• The applications support student focus and help, and
the support may be given by help menu or online on the
internet.

• The internal processing of the µP commands is
designed to be monitored step by step by the user.

• There is no need intense manual works.
• Timing of microprogram is easy to be understood.
• The limited I/O operations of such systems are

extended to help the students on this topic.
Its financial side of the contribution can be listed as:
• While the simulators can be used on any PC,

electromechanical experimental sets are only available in
the labs.

• Its cost is very low.
• There are no breakdown problems and no need for

maintenance and technician support.
• No or little extra costs for the students.
• The simulator is ready to use every time but the labs

accommodating electromechanical experimental sets are
not ready to be reached every time for security and
scheduling considerations.

The tool developed shows to be used as an
application tool in industrial schools and where the µPs are
taught, since it meets all the requirements of a µP which
are present in an experimental set for teaching computer
architecture and animates all the events in a computer
visually and graphically. As a result, teaching µP
architecture and ALP is provided in quick and efficient way.

Future works may include transferring of machine
codes in memory of simulator to electromechanical
experimental set by an emulator and retransferring of these
from the set to simulator by which a computer interfaced
electromechanical experimental education set can be

58

established. Some extra virtual application I/O elements
for the user can be added to the system.

The interactive VISUAL 6502 µP simulator which is
interactive, flexible and user friendly has been tested for
two semesters in the µP lab. at the University of Gazi.
According to our observations, the students find the use of
simulators easier than the electromechanical sets. In
addition, the use of the software has increased the overall
success of the students taking part of the course.

References

1. Buck Engineering Co. Inc. Microprocessor Concepts and

Applications. – Lab-Volt, USA. − 1994.
2. del Rio A., Andiana J. J. R. UV151: A Simulation Tool For

Teaching // Learning The 8051 Microcontroller, Frontiers in
Education Conference, FIE 2000, 30th Annual. − 2000. − Vol.
2. − P. F4E/11-F4E/16.

3. Smith M. R., Cheng M. Use of Virtual (simulated) hardware
devices in microprocessor laboratories and tutorials //
Frontiers in Education Conference, FIE’96, 26th Annual
Conference. − 1996. − Vol. 3. − P. 1181–1185.

4. Pearson M., Armstrong D., McGregor T., Design of a
Processor to Support the Teaching of Computer Systems //
Proceedings of the First IEEE International Workshop on
Electronic Design, Test and Applications (DELTA’02). −
2002. − P. 240−244.

5. Lovergrove W. P. A Microprocessor Trainer Simulator //
Proc. of the 26th Frontiers in Education Annual Conference. −
1996. − Vol. 2. − P. 506−509.

6. Caldwell C. W., Andrews D. L., Scott S. S. A Graphical
Microcomputer Simulator for Classroom Use // Frontiers in
Education Conference. – 1995. − Vol. 2. − P. 3b3.9–3b312.

7. Robbins S., Robbins K. A. A Microprogramming Animation
// IEEE Transaction on Education. − 1998. − Vol. 41, No. 4.
− P. 293−300.

8. Wick C. E. Teaching Embedded Computer Systems with a
Windows-Based Simulator // Frontiers in Education
Conference, FIE’96. – 1996. − Vol. 1. − P. 242–245.

9. Beaumont M., Jackson D. Visualisation as an Aid to Low-
Level Programming // Frontiers in Education Conference,
27th Annual Conference. Teaching and Learning in an Era of
Change. − 1997. − Vol. 3. − P. 1158−1163.

10. Diab H. B., Demashkieh I. A Computer-Aided Teaching
Package for Microprocessor Systems Education // IEEE
Transaction on Education. − 1991. − Vol. 34, No. 2. − P.
179−183.

11. Handerson W. D. Animated Models for Teaching Aspects of
Computer Systems Organization // IEEE Transactions on
Education. − 1994. − Vol. 37, No. 3. − P. 247−256.

12. Martins Carlos A. P. S. et al. A New Learning Method of
Microprocessor Architecture // 32th ASEE/IEEE Frontiers in
Education Conference. − 2002. − P. 16−21.

13. Topaloglu N. Microprocessors and Assembly Language (in
Turkish). – Ankara: Seckin Publisher, 2001.

14. VISUAL 6502 Microprocessor Simulator Home Page.
Accessed at: w3.gazi.edu.tr/web/nurettin/visual.

Received 2009 10 10

N. Topaloglu, O. Gürdal. A Highly Interactive PC based Simulator Tool for Teaching Microprocessor Architecture and
Assembly Language Programming // Electronics and Electrical Engineering. – Kaunas: Technologija, 2010. – No. 2(98). – P. 53–
58.

Teaching microprocessor programming in computing science is one of the challenging tasks of the instructors. This is mainly
because of totally new and different subject that needs to be thought to the students. One other subject that produces even more
difficulties is making the students to comprehend the I/O operations. There are several hardware platforms especially designed to focus
on this matter. There are also several simulation platforms developed as an aid to teach Assembly Language Programming (ALP). In
this study we have developed a platform putting extra focus on the I/O aspects of ALP. Our platform provides the user, a highly
interactive platform consisting of an editor, a simulator and an animator including several virtual I/O elements. Using the simulator has
improved the understanding of the subjects at The Department of Computer Education of Technical Education Faculty of the University
of Gazi in Ankara, Turkey. Ill. 7, bibl. 14 (in English; summaries in English, Russian and Lithuanian).

Н. Топалоглу, О. Гурдал. Интерактивный тренажер на основе ПК как средство обучения микропроцессорной
архитектуры и языка программирования Ассемблер // Электроника и электротехника. – Каунас: Технология, 2010. – №
2(98). – С. 53–58.

Преподавание программирования микропроцессоров в компьютерной науке является одной из самых сложных задач для
инструкторов. Главная причина того это совершенно новая тематика, которую студенты должны освоить. Еще один вопрос,
который создает даже больше трудностей, – понятие операций ввода и вывода. Есть несколько аппаратных платформ,
специально предназначенных для решения этого вопроса. Есть также несколько платформ моделирования для учения языка
программирования Ассемблера (ALP). Мы разработали платформу позволяющую дополнительно сосредоточиться на I/O
аспектах ALP. Наша платформа предоставляет пользователю высокую интерактивную среду, состоящую из редактора,
симулятора и аниматора, в том числе несколько виртуальных элементов I/O. Использование тренажера улучшило понимание
предметов среди студентов департамента компьютерного образования факультета технического образования университета Гази
в Анкаре (Турция). Ил. 7, библ. 14 (на английском языке; рефераты на английском, русском и литовском яз.).

N. Topaloglu, O. Gürdal. Interaktyvus kompiuterinis imitatorius, skirtas mikroprocesorių architektūrai ir asemblerio
programavimo kalbai mokyti // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2010. – No. 2(98). – P. 53–58.

Mikroprocesorių programavimo mokymas yra vienas didžiausių iššūkių informatikos dėstytojams. Dalykas studentams paprastai
būna visiškai naujas ir labai skiriasi nuo kitų paskaitų. Studentams taip pat sunku suprasti įvesties ir išvesties operacijas. Šiam darbui
palengvinti skirtos kelios aparatinės platformos. Taip pat yra imitavimo platformų, kuriomis mokoma programuoti asembleriu. Sukurta
platforma, kuria naudojantis daugiau dėmesio skiriama įvesties ir išvesties aspektams. Ji suteikia vartotojui galimybę naudotis
interaktyviuoju teksto redaktoriumi, imitatoriumi ir animacijos posistemiu. Taip pat numatyti keli virtualūs įvesties ir išvesties
elementai. Imitatorius padėjo studentams lengviau suprasti dėstomą medžiagą. Il. 7, bibl. 14 (anglų kalba; santraukos anglų, rusų ir
lietuvių k.).

	SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
	T 120

