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Introduction 

The task of signal detection and separation is a central 
theme in a wide variety of fields. Many techniques exist to 
improve the capability of detecting or enhancement a weak 
target signal corrupted by the additive Gaussian noise or 
the background noise generated by an unknown nonlinear 
dynamical mechanism. Due to its simplicity in implemen-
tation and efficiency in computation the nonlinear phase-
space projection technique together with singular value 
decomposition or approximate joint diagonalization a set 
of time-delayed covariance matrices procedure is an essen-
tial tool in noise reduction [1–3], signal detection [4, 5], 
Blind Source Separation (BSS) [6–9] and biomedical si-
gnal processing [10, 11] algorithms. Given a noisy time 
series { }L

iix 1=  the phase points can be reconstructed by 

time delay embedding [12] – i.e. { } ( )τ1
1

−−
=

mL
iix : 

( )[ ]Tmiiiii xxxx τττ 12 ,,,, −+++= x ,  (1) 

where m  – the embedding dimension,τ  – time delay and 
( )T⋅ denotes the transpose of a real matrix. At 1=τ  the 
reconstructed phase space matrix X  with m  rows and 

1+−= mLM  columns (called a trajectory matrix) is de-
fined by 
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It is widely assumed that if the noise is additive white 
Gaussian zero-mean measurement noise uncorrelated with 
the signal, the covariance matrix ( )0R  of the trajectory 
matrix X  and time-delayed covariance matrix ( )dR  take 
the following structure respectively: 

 

( ) ( ) ( ){ } ( ) IRxxR 2T 00 σ+== sttE ,  (3) 

( ) ( ) ( ){ } ( )ddttEd s
T RxxR =+= ,   (4) 

where {}⋅E  denotes the mathematical expectation value of 

the bracketed quantity, 2σ  – the variance of the noise, I  – 
the identity matrix, 1+≥ md  (if 1=τ ), ( )0sR  and 

( )dsR  the covariance matrix and time-delayed covariance 
matrix of true target signal respectively. However, adop-
ting the delayed covariance matrices resolves the influence 
of the noise only at low and moderate amount of noise. If 
the signal-noise ratio (SNR) is low (approximately minus 
20 dB and lower), this assumption is violated and the 
equation (4) is not valid for finite number of data samples 
– a noise related term still remains in the time-delayed 
covariance matrix. Moreover, the entries of covariance 
matrix determined by noise are much larger than that of 
target signal and the eigenvalues of ( )dR  demonstrate the 
behaviour of the eigenvalues of a pure noise time-delayed 
covariance matrix. Consequently, we cannot assign the 
first eigenvectors with the largest eigenvalues to signal 
subspace and the remaining eigenvectors with the smallest 
eigenvalues to noise subspace.  

The objective of this paper becomes to experimentally 
investigate the detection performance of algorithm based 
on nonlinear phase-space reconstruction, a principal com-
ponents analysis and frequency analysis in the detection of 
extremely weak pseudoperiodic signals buried in a large 
white Gaussian background. By pseudoperiodic signals we 
mean either a representative of a periodic orbit perturbed 
by dynamical noise or that the time series are produced 
from nonlinear deterministic systems. This class of time 
series – (chaotic) pseudoperiodic – has aroused great inte-
rest due to their close relation to some important natural 
and physiological systems. 

Throughout the paper, the x component of the well-
known Rossler system, which is chaotic and contains ob-
vious periodic component, for illustration is used. 
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Detection scheme 

The delayed covariance matrix ( )dR  is computed 
with one matrix rR  obtained by eliminating the last d 
columns of centered trajectory matrix X  (with 

XXX −= , where X  is the column matrix of mean 

over dimension m,,1 ) and another matrix, sR , obtai-
ned by eliminating the first d columns of X : 

( ) T
srNN

d XXR
1

1
−

= ,         (5) 

where dMNN −= . The introduced trajectory matrix, 
similar to a square Hankel matrix, is matrix with constant 
(positive sloping) skew-diagonals. To avoid the large ent-
ries I2σ  at some descending diagonal of the time-delayed 
covariance matrix ( )dR  time-lag is chosen 1+≥ md . 

Taking the standard singular value decomposition 
( ) TUWR Σ=d , the projected trajectory matrix is compu-

ted via the equation [1, 3] 

( ) XXXUUX +−⋅⋅= T
11

ˆ ,   (6) 

where the eigenvectors 1U , associated with the q largest 
eigenvalues diag( Σ ), span the signal subspace and X  is 
the mean over dimension m,,1 . Finally, a enhanced one-
dimensional signal is created from the new space, typically 
by time-aligning and averaging the columns of the trajecto-
ry matrix X̂  (see [1] for more details) 
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and analyzed using the standard frequency estimation. 

Detection performance analyses from simulated data 
sets  

The detection performance of before-mentioned sch-
eme was investigated with the x component of the Rössler 
system – the generated 200000 data points were divided 
into 20 equal blocks of 10000 samples. The equation of the 
Rössler system was numerically integrated with a step, 
which guaranty oversampling – about 260 data points over 
period. The additive white Gaussian noise was added with 
SNR from – 22 dB to –26dB. For such a small value of 
SNR, Fig. 1 shows that the signal frequency is completely 
hidden in the noisy broadband spectrum. 

The trajectory matrix (2) was constructed by over-
embedding  [1], [3], [5] with time delay 1=d . The data 
dimension 250=m  (approximately one main period of 
target signal) was chosen. Data processing and time and 
frequency analyses were performed using software written 
in Matlab (The MathWorks, Natick, MA). Two eigenvec-
tors, associated with the largest eigenvalues were chosen. 

 
Fig. 1. Frequency spectra of the white Gaussian noise and target 
Rossler signal with SNR = – 26 dB 
 

Fig. 2 shows frequency spectra of the target signal 
correctly extracted from additive white Gaussian noise 
environment. Fig. 3 shows the original Rossler signal and 
extracted. 

 

 
Fig. 2. Frequency spectra of the target signal extracted from 
additive white Gaussian noise environment, where the main 
frequency (0,4 Hz) of the signal is clearly observable 

When the main period of target signal is 
approximately known, the shape of the time-delayed cova-
riance matrix of true target signal can be enhanced by ave-
raging the ( )dR  and ( ) ( ) JRJW ⋅⋅= dd , where J  is the 
exchange matrix with ones on its antidiagonal and zeros 
elsewhere. Factually the matrix ( )dW  represents the tra-
jectory matrix with permuted entries, i. e. 
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Therefore, the covariance matrices ( )dR  and ( )dW  
are calculated with opposite lags. For true target signal 
( ) ( )dd WR ≈  at Td ≈ , where T  is the main period of the 
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true source signal, but these matrices are unequal for noise 
and averaging operation  

( ) ( ) ( )[ ] 2/ddd WRZ += ,   (9) 

allow to suppress the influence of additive noise in some 
degree. The probability of detection by using ( )dR  and 
( )dZ  is shown in Fig. 4. 

 
Fig. 3.Signals: a) Original Rossler and b) extracted from additive 
white Gaussian noise environment at SNR= – 26 dB 

 
Fig. 4. The probability of detection (Pd) versus signal-noise ratio 
(SNR) by using single delayed covariance matrix ( )dR  and 

averaged covariance matrix ( )dZ  

It is found that the detection algorithm by oversamp-
ling and appropriate selection of embedding dimension 
(overembedding) can reliably extract the main signal 
frequency at ( )dBSNR 2622 ÷−≥ . Naturally, the detection 
threshold of this algorithm, based on auto covariance, de-
pends on the time series length and its stationarity. 

It will be observed, that when the fourth-order cross-
cumulant matrix is used instead of delayed covariance 

matrix, the performance of detection at low SNR noticeab-
ly fall – the detection algorithm can reliably extract the 
main signal frequency in this experiment only at 

dBSNR 18−≥ . For time series ( ) ( ) ( )nynxnw ,,  and ( )nz  
estimates of the fourth-order cross-cumulants are obtained 
as [13] 

( )
( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }klnynxErnznwE
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,

  (10) 

where {}⋅E  denotes the ensemble expectation operator and 
rlk ,,  are appropriate lags. In this work 

( ) ( ) ( )nynxnw ,, and ( )nz  are the rows 1,, +jji  and 
2+j  of trajectory matrix (2) respectively and mj :1=  

for either 2:1 −= mi ; 

Conclusions 

In this paper the detection algorithms consisting of 
nonlinear phase space reconstruction technique, principal 
components analysis feature selection and frequency ana-
lysis are investigated by applying them to high-noisy pseu-
doperiodic chaotic Rossler signal. It is demonstrated, that 
algorithm is able to detect weak pseudoperiodic or pseudo-
periodic deterministic signals completely hidden beneath 
the additive Gaussian noise floor at SNR up to –24 dB. 
The signal‘s main frequency can be extracted accurately 
and no false frequency peaks occur in spectrum of enhan-
ced signal by the time series with length of over 10000 
points. Whereas adopting the fourth-order cross-cumulant 
matrix instead of delayed covariance matrix leads to noti-
ceably worse results. Therefore, it may be concluded, that 
detection technique based on singular value decomposition 
performing on the time-delayed covariance matrix of re-
constructed phase space by selection of appropriate em-
bedding (overembedding) and oversampling is a fairly 
effective method for detecting weak pseudoperiodic si-
gnals buried in a Gaussian noisy background.  
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