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Introduction

The task of signal detection and separation is a central
theme in a wide variety of fields. Many techniques exist to
improve the capability of detecting or enhancement a weak
target signal corrupted by the additive Gaussian noise or
the background noise generated by an unknown nonlinear
dynamical mechanism. Due to its simplicity in implemen-
tation and efficiency in computation the nonlinear phase-
space projection technique together with singular value
decomposition or approximate joint diagonalization a set
of time-delayed covariance matrices procedure is an essen-
tial tool in noise reduction [1-3], signal detection [4, 5],
Blind Source Separation (BSS) [6-9] and biomedical si-
gnal processing [10, 11] algorithms. Given a noisy time
series {xi }iL=1 the phase points can be reconstructed by
time delay embedding [12] - i.e. {X; }i":_l(m_l)f:

Xj :[Xivxi+rvxi+211”'

Xivmae) s Q)

where m — the embedding dimension, z — time delay and

()7 denotes the transpose of a real matrix. At 7 =1 the

reconstructed phase space matrix X with m rows and
M =L-m+1 columns (called a trajectory matrix) is de-
fined by

XX XL-m+1
X X Xy _
Xm  Xm+1 XL

It is widely assumed that if the noise is additive white
Gaussian zero-mean measurement noise uncorrelated with

the signal, the covariance matrix R(0) of the trajectory
matrix X and time-delayed covariance matrix R(d) take
the following structure respectively:

77

2,

0)= EXtXT(t)}=R4(0)+ o ®)
d)= EREXT (t+d)]=R4(d), (@)

where E{} denotes the mathematical expectation value of

the bracketed quantity, &% — the variance of the noise, | —
the identity matrix, d>m+1 (if r=1), R4(0) and
R,(d) the covariance matrix and time-delayed covariance

matrix of true target signal respectively. However, adop-
ting the delayed covariance matrices resolves the influence
of the noise only at low and moderate amount of noise. If
the signal-noise ratio (SNR) is low (approximately minus
20 dB and lower), this assumption is violated and the
equation (4) is not valid for finite number of data samples
— a noise related term still remains in the time-delayed
covariance matrix. Moreover, the entries of covariance
matrix determined by noise are much larger than that of
target signal and the eigenvalues of R(d) demonstrate the

behaviour of the eigenvalues of a pure noise time-delayed
covariance matrix. Consequently, we cannot assign the
first eigenvectors with the largest eigenvalues to signal
subspace and the remaining eigenvectors with the smallest
eigenvalues to noise subspace.

The objective of this paper becomes to experimentally
investigate the detection performance of algorithm based
on nonlinear phase-space reconstruction, a principal com-
ponents analysis and frequency analysis in the detection of
extremely weak pseudoperiodic signals buried in a large
white Gaussian background. By pseudoperiodic signals we
mean either a representative of a periodic orbit perturbed
by dynamical noise or that the time series are produced
from nonlinear deterministic systems. This class of time
series — (chaotic) pseudoperiodic — has aroused great inte-
rest due to their close relation to some important natural
and physiological systems.

Throughout the paper, the x component of the well-
known Rossler system, which is chaotic and contains ob-
vious periodic component, for illustration is used.
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Detection scheme

The delayed covariance matrix R(d) is computed
with one matrix R, obtained by eliminating the last d

columns of centered trajectory matrix X (with
X =X —X , where X is the column matrix of mean

over dimension 1,---,m) and another matrix, R, obtai-
ned by eliminating the first d columns of X:

R(d) 1

T NN-1

where NN =M —d . The introduced trajectory matrix,
similar to a square Hankel matrix, is matrix with constant
(positive sloping) skew-diagonals. To avoid the large ent-
ries o1 at some descending diagonal of the time-delayed
covariance matrix R(d) time-lag is chosen d >m+1.

Taking the standard singular value decomposition
R(d)=W=UT, the projected trajectory matrix is compu-
ted via the equation [1, 3]

.
X XTI,

®)

X=U;-U] -(X=X)+X, (6)

where the eigenvectors Uy, associated with the g largest
eigenvalues diag( X ), span the signal subspace and X is
the mean over dimension 1,---,m. Finally, a enhanced one-
dimensional signal is created from the new space, typically
by time-aligning and averaging the columns of the trajecto-
ry matrix X (see [1] for more details)

X1 >A<1+(m—1) XL-m+1
o K (met XL-m+1
Ka= . vy ! )
>A<1+(m—1) Xi-mel XL

and analyzed using the standard frequency estimation.

Detection performance analyses from simulated data
sets

The detection performance of before-mentioned sch-
eme was investigated with the x component of the Rdssler
system — the generated 200000 data points were divided
into 20 equal blocks of 10000 samples. The equation of the
Rdéssler system was numerically integrated with a step,
which guaranty oversampling — about 260 data points over
period. The additive white Gaussian noise was added with
SNR from - 22 dB to —26dB. For such a small value of
SNR, Fig. 1 shows that the signal frequency is completely
hidden in the noisy broadband spectrum.

The trajectory matrix (2) was constructed by over-
embedding [1], [3], [5] with time delay d =1. The data

dimension m =250 (approximately one main period of
target signal) was chosen. Data processing and time and
frequency analyses were performed using software written
in Matlab (The MathWorks, Natick, MA). Two eigenvec-
tors, associated with the largest eigenvalues were chosen.
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Fig. 1. Frequency spectra of the white Gaussian noise and target
Rossler signal with SNR = - 26 dB

30

Fig. 2 shows frequency spectra of the target signal
correctly extracted from additive white Gaussian noise
environment. Fig. 3 shows the original Rossler signal and
extracted.
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Fig. 2. Frequency spectra of the target signal extracted from

additive white Gaussian noise environment, where the main

frequency (0,4 Hz) of the signal is clearly observable
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When the main period of target signal is
approximately known, the shape of the time-delayed cova-
riance matrix of true target signal can be enhanced by ave-
raging the R(d) and W(d)=J-R(d)-J, where J is the
exchange matrix with ones on its antidiagonal and zeros
elsewhere. Factually the matrix W(d) represents the tra-

jectory matrix with permuted entries, i. e.

XL XL-1 Xm
X| X| _ Xm_
XL-m+1 XL-m X

Therefore, the covariance matrices R(d) and W(d)

are calculated with opposite lags. For true target signal
R(d)~W(d) at d =T, where T is the main period of the

~
~



true source signal, but these matrices are unequal for noise
and averaging operation

Z(d)

[R(d)+w(d)]/2, 9)

allow to suppress the influence of additive noise in some
degree. The probability of detection by using R(d) and

Z(d) is shown in Fig. 4.
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Fig. 3.Signals: a) Original Rossler and b) extracted from additive
white Gaussian noise environment at SNR= - 26 dB
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Fig. 4. The probability of detection (Pd) versus signal-noise ratio

(SNR) by using single delayed covariance matrix R(d) and

-26

averaged covariance matrix Z(d)

It is found that the detection algorithm by oversamp-
ling and appropriate selection of embedding dimension
(overembedding) can reliably extract the main signal
frequency at SNR > —(22+ 26)dB . Naturally, the detection

threshold of this algorithm, based on auto covariance, de-
pends on the time series length and its stationarity.

It will be observed, that when the fourth-order cross-
cumulant matrix is used instead of delayed covariance
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matrix, the performance of detection at low SNR noticeab-
ly fall — the detection algorithm can reliably extract the
main signal frequency in this experiment only at

SNR > -18 dB . For time series w(n), x(n), y(n) and z(n)

estimates of the fourth-order cross-cumulants are obtained
as [13]

cy(n+1)-z(n+r)j-
E{y(n)-z(n+r-1)}-
E

{x(n)-z(n+r—k)}-

(10)

where E{} denotes the ensemble expectation operator and
k, I, r appropriate  lags. this  work
w(n), x(n), y(n) and z(n) are the rows i, j, j+1 and
j+2 of trajectory matrix (2) respectively and j=1:m
foreither i=1:m-2;

are In

Conclusions

In this paper the detection algorithms consisting of
nonlinear phase space reconstruction technique, principal
components analysis feature selection and frequency ana-
lysis are investigated by applying them to high-noisy pseu-
doperiodic chaotic Rossler signal. It is demonstrated, that
algorithm is able to detect weak pseudoperiodic or pseudo-
periodic deterministic signals completely hidden beneath
the additive Gaussian noise floor at SNR up to —24 dB.
The signal‘s main frequency can be extracted accurately
and no false frequency peaks occur in spectrum of enhan-
ced signal by the time series with length of over 10000
points. Whereas adopting the fourth-order cross-cumulant
matrix instead of delayed covariance matrix leads to noti-
ceably worse results. Therefore, it may be concluded, that
detection technique based on singular value decomposition
performing on the time-delayed covariance matrix of re-
constructed phase space by selection of appropriate em-
bedding (overembedding) and oversampling is a fairly
effective method for detecting weak pseudoperiodic si-
gnals buried in a Gaussian noisy background.
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K. Pukénas. Nonlinear Detection of Weak Pseudoperiodic Signals hidden under the Noise Floor // Electronics and Electrical
Engineering. — Kaunas: Technologija, 2010. — No. 4(100). — P. 77-80.

The extraction of weak pseudoperiodic (deterministic) signals buried in a additive Gaussian noisy background is investigated by ap-
plying the nonlinear signal detection algorithm, based on phase-space embedding technique, principal component analysis and power
spectral analysis. By analyzing Rossler chaotic signals, it is demonstrated that the detection algorithm based on the singular value de-
composition of the time-delayed covariance matrix of the reconstructed high-dimensional phase space matrix is able to detect weak
pseudoperiodic signals completely hidden beneath the additive Gaussian noise floor at SNR up to —24 dB.. lll. 4, bibl. 13 (in English;
abstracts in English, Russian and Lithuanian).

K. Iykenac. HeinHeiiHoe AeTeKTHPOBaHHE CJIAa0bIX MCEBIOMEPUOANYECKHX XAOTHYECKHX CHTHAJIOB HUKE YPOBHsI mIymMoB //
DJIeKTPOHHUKA U JIeKTpoTexHuKa. — Kaynac: Texnosorusy, 2010. — Ne 4(100). — C. 77-80.

Vccenenyercst BbIAEIEHNE YacTOT CJIa0BIX MCEBAONEPUOANYECKHX Xa0THYECKUX CHTHAJIOB M3 aJUTHBHOTO rayCCOBOTO IIyMa IIPH UC-
TOJIB30BAHUH AJITOPUTMA OOHAPYKEHHSI CHIHAJIOB, OCHOBAHHOTO HAa PEKOHCTPYKIMHU (Ha30BOTO MPOCTPAHCTBA, aHATIN3E IJIaBHBIX KOM-
MOHEHT M CIIEKTpaibHOro aHamm3a. [lyrem aHanmM3a XaOTHYECKOro curaana Pocciepa mokasbiBaeTCs, YTO aJllOPUTM, OCHOBAaHHBIH Ha
JICKOMITO3UIINK 33ICP)KAHHOM 110 BPEMEHH KOBAapHALIMOHHON MaTpPHLBI JaHHBIX PEKOHCTPYHPOBAHHOI'O MHOTOMEPHOro (a3oBOro mpo-
CTPaHCTBA M03BOJIIET OOHAPYKUTH OCHOBHYIO YacTOTy curHaia Pocciiepa Ha (oHe 6esioro rayccoBoro Iyma rnpu OTHOIICHHH CUTHAJ-
urym Bbie — 24 1b. Wn. 4, 6u6n. 13 (Ha aHrmuiickoM si3bike; pedepaTbl Ha aHTJIMHACKOM, PYCCKOM U JIUTOBCKOM 513.).

K. Pukénas. Silpny pseudoperiodiniy chaotiniy Zemesnio nei triukSmo lygio signaly iSskyrimas taikant netiesinius metodus //
Elektronika ir elektrotechnika. — Kaunas: Technologija, 2010. — Nr. 4(100). — P. 77-80.

Tiriamas silpny pseudoperiodiniy (chaotiniy) signaly i$skyrimas i adityviojo baltojo Gauso triukSmo, signaly detekcijai naudojant
algoritma, pagrista fazine erdvés rekonstrukeija, esminiy komponencéiy analize ir spektrine analize. Atlikus tyrimus su chaotiniu Rossle-
rio signalu, parodoma, kad algoritmas, rekonstruotos remiantis daugiamatés fazinés erdvés duomeny suvélintosios kovariacinés matricos
dekompozicijos tikriniais vektoriais, igalina iSskirti pagrindinius Rosslerio signalo daznius i3 baltojo Gauso triukSmo, kai signalas ir
triukSmo santykis didesnis kaip -24 dB. Il. 4, bibl. 13 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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