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Introduction 

Nowadays with growth of data traffic [1], it is 
essential to control channel congestion efficiently in 
Internet for successful utilizing network resources (routers, 
switches, links, and etc). The main protocol for current 
objective is Transport Control Protocol (TCP) today. It is 
reliable connection-oriented protocol, which implements 
the flow control on heterogeneous network by means of a 
sliding window, congestion avoidance, and 
acknowledgment mechanisms, simultaneously. TCP runs 
over more network technologies than any other protocol 
and provides the highest degree of interoperability.  

The main problem with TCP is that typical protocol 
implementations (RFC 3782) are successful at low speed 
(up to 100 Mbps) but it is unfit for high speed networks 
due to slow grow-up of congestion window, and poor 
evaluation of upper bound of the channel [2]. This is 
because the congestion window growth function – W(t) has 
square features on initial phase (RFC 2581) and depends 
on channel delay: if latency is high, the congestion window 
growth rate will be low. To eliminate the following 
drawback, many TCP congestion control algorithms were 
developed. Most common, oriented for large volumes of 
data transfers, are the following: HSTCP (RFC 3649), Fast 
(RFC 3782), STCP (RFC 3286), Cubic [3]. 

All of these versions also rely on end-to-end ACK 
and congestion window [4], but general difference is that 
W(t) is cubic-root on initial phase and depends on latency 
marginally, comparing with typical versions. The 
congestion window growth is defined in real-time and 
depends on last congestion event – received ACK [3]. In 
other words, the sender is allowed to increase the TCP data 
rate for each incoming ACK. As a result, unhampered 
transmission of ACK for successful flow control is very 
important, and any ACK rate suspension can influence the 
TCP functionality and performance [5–7].  

In consequence, the growth of network bandwidth is 
coherent with ACK message rate on the following TCP 
operational scheme. When the network capacity is 
increasing, the ACK rate on the channel is increasing too. 

So, in high speed network we have another undesirable 
feature – growth of technological expenditures [8]. 

Moreover, TCP is mainly used in Internet for bulk 
traffic (HTTP, FTP, SMTP, IMAP, and etc) [9]. Bulk 
traffic sources are sending large packets in one direction 
only [10]. Therefore, uplink traffic is composed of short 
packets as showed in [5]. In such conditions, encapsulated 
Ethernet frame with TCP message without data (only ACK 
flag and number) is 64 Bytes, not including the preamble. 

The poor performance of short frame traffic is well 
known and analyzed in detail [11], and [12]. This 
degradation occurs for two reasons: technological 
expenditures [8] and routers CPU overload [13]. The last 
concerns to the fact that router CPU load depend on the 
packet rate and not to the packet length [14]. It’s clear, that 
on high speed networks this is observable better [13]. 
Therefore, with growth of bandwidth the TCP ACK 
message rate is increasing too. For a large number of short 
packets in traffic more efficient routers will be needed. 
Hereby, in following situation the routers with slow CPUs 
will become bottlenecks and will lead to the degradation of 
network performance too. The critical threshold of router 
functionality is ~ 45-50% of CPU load [15].  

One of the ways to increase performance in modern 
high speed networks is by lowering the number of TCP 
ACK messages. This can be done through ACK filtering 
mechanism [16], which is  well known and used in 
asymmetric and wireless networks environments [5], [6], 
[7], but is considered to be inconsistent with TCP traffic.  

The aim of current paper is to find, how ACK 
filtering can influence the TCP functionality, and how 
significant number of TCP ACK messages affects the 
performance of the network channel – chain of the routers. 

TCP acknowledgment mechanism  

The acknowledgement mechanism is at the heart of 
TCP and relies on demand for the receiver to communicate 
with the sender by sending back an ACK as it receives 
data. TCP uses a cumulative ACK technique (RFC 813). 
The ACK number field in a TCP message header received 
by the sender indicates that all bytes of data with sequence 
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numbers less than that value have been successfully 
received (ACK’ed) by the destination application (Fig.1. 
segments data1, data2 and ack1, ack2). 
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Fig. 1. TCP operation and acknowledgment mechanism diagram 

Normally TCP does not send an ACK the instant it 
receives data. It delays ACK (RFC 2581), hoping to have 
data going in the same direction. A typical TCP uses delay 
of 200 ms and sends ACK for every other data message. 
However, there is not much TCP traffic with bidirectional 
data flows in Internet [9]. Delayed ACK is usable for an 
interactive applications (Telnet, SSH, and etc.) only [10].  

The TCP sender’s uses ACK to estimate how much 
data can be outstanding in the network without packets 
being lost in routers queues. For this purpose it uses a 
congestion window, which growth function W(t) depends 
on the feedback sender gets from the network through the 
received ACK. After initializing the TCP sender is allowed 
to increase the W(t) for each incoming ACK .  

In this paper for research we use TCP Cubic were the 
congestion window is determined by function [3] 
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where C is a scaling factor, t [s] – the elapsed time from 
the last window reduction, W(t)max [bytes] – the maximal 
window size before the last reduction; β – a constant 
multiplication decrease factor applied for W(t)C reduction 
to minimal at the time of loss event (β·W(t)max) [3] 

maxmaxmin )()()( tWtWtW ⋅−= β . (2) 

Consequently, the ACK reception for TCP sender is 
very important process. Especially at initial phase, where 
growth of W(t)C is very intense [3] and ACK loss can lead 
to degradation of the congestion window to its minimal 
value. Meanwhile, on phase when W(t)C is close or equal 
to maximal value - W(t)max, growth becomes minimal (2) 
and congestion event becomes less important. In that case, 

ACK is mainly used for detection of data message loss and 
this is a second very important function of the TCP 
acknowledgment mechanism (RFC 813). 

The TCP data message retransmission can occur 
because of two main reasons [17]: after expiration of 
retransmission timer (RFC 813) and after receiving three 
or more duplicated ACK (Fig. 1: ack3, ack4, ack5). In first 
case the retransmission timer expires when no new data is 
acknowledged for a set of threshold time (RFC 2581). 

The retransmission timeout (tRTO) is taken as a loss 
indication, and it triggers retransmission of the 
unacknowledged segments. The threshold time during 
which the confirming ACK message must be received is  

RTTRTTRTO 4 σ⋅+= tt , (3) 

where tRTT is the average of time of successful TCP 
message transmission (Fig. 1: tRTT measurements); σRTT – 
the root-mean-square of deviation of  tRTT.   

If during tRTO the ACK is not received, the data 
segments loss will be detected and the TCP sender will set 
W(t)C to 1 segment (RFC 2988); since tRTO indicate that 
channel utilization has changed dramatically [17]. 

Second reason occurs after receiving three or more 
duplicated ACK [17]. As shown in Fig. 1 the message 
data4 was lost. The TCP receiver accepts messages data3, 
data5, data6, and so on (Fig.1.), but not data4. The ack4, 
ack5 with same ACK number 512 were sent for received 
messages. After duplicated ACK is detected, the 
transmitter waits for tRTO to expire. TCP does not yet know 
whether a duplicate ACK is caused by a loss or just 
reordering of segments. TCP sender waits the timeout (3) 
and assumes that if there is just a reordering it will not get 
ACK with number 512 anymore. However, after a while, a 
third duplicated ACK is received in a row (ack5). It is a 
strong indication that segments have been lost. TCP 
performs retransmission of segments 513-1023 with data6, 
without waiting for a tRTO to expire. After this the sender 
maintains the number of outstanding segments by sending 
a new segment for each incoming ACK (1).  It should be 
noted that only retransmission of identified as lost (timed-
out) TCP segments, are implemented in the "conservative" 
TCP versions (RFC 3517). Meanwhile, in "aggressive" 
TCP implementation after the loss, all unacknowledged 
messages are retransmitted [17].  

The TCP contains only a general assertion that data 
should be acknowledged promptly, but gives no more 
specific indication as to how quickly and as how frequently 
an ACK must be sent. In RFC’s clearly is indicated, that 
current mechanism must maintain two very important 
functions: to prevent data retransmission, and as soon as 
possible to make ACK to permitting further data to be sent. 
In addition to this argument, the fact that ACK message are 
very important in the initial phase (1) of data transmission 
and the fact that rate of ACK rely on data rate (segments 
loss due to receiving 3 or more duplicated ACK) and 
cannot be less than 1/tRTO (3), must be evaluated. 

ACK filtering technique 

The concept of ACK filtering was discussed well in 
[16]. The idea is fairly simple. When router needs to send 
the current ACK, it scans queue for any early TCP ACK. If 
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ACK already exist in the queue, simply drop them before a 
queuing the new ACK. Since acknowledgments are 
cumulative, the newest one obsoletes all older ACK. So, 
there's no need for more than one per connection to ever be 
in the queue. Dropping old ACK when a new one is 
queued means there would never be more than one ACK 
on the queue at any time, so this is pretty much the same as 
replacing the earlier ACK with the newer one.  

In the same reference [16] the main drawbacks of 
ACK filtering were reviewed. It is noted that ACK 
clocking scheme, which for both drop and congestion 
control is used, with the ACK filtering can be destroyed. 
The current propositions are compelling. However, the 
discussed apprehensions can be challenged with arguments 
of [5], where the TCP performance in the asymmetric links 
was analyzed. It is shown that asymmetry affects the TCP 
performance, because it relies on feedback of cumulative 
ACK from the receiver. In addition, typical TCP is ACK 
clocked, so the arrivals of ACK on the reverse channel 
have significant effects on the forward channel throughput. 
In the networks with bandwidth asymmetry the ACK 
filtering can work well. This improves the forward TCP 
throughput and the fairness of competing connections 
greatly. In paper ACK filtering was modeled on Opnet. 

Work [6] presents a quite similar study. Analysis of 
unfairness problem between TCP upstream data and ACK 
downstream on the unevenly shared wireless channel is 
provided. It is shown that ACK filtering increases 802.11 
channel utilization without any dependence on tRTO (3). 

The extensive simulations with ACK filtering in [7] 
were proposed. It is demonstrated that lowering ACK 
number can improved TCP performance significantly:  
achieving up to 25% gain in chain networks and 35% in a 
complex grid network, compare with typical TCP. In work 
the ACK filtering motivation follows from fact that short 
ACK messages consume channel capacity comparable to 
data packets when the transmission is high rate.  

The methodology of experiments 

In order to find out, what real influence the ACK 
filtering makes to the TCP functionality and how it affects 
the performance of the network channel devices (routers) 
an experiments were performed. For this reason Ethernet 
network with IP routing, and TCP session between two 
independent nodes (PC0 and PC1/PC2, Linux OS, 2.6.32 
kernel, and TCP Cubic version enabled [3]) were created. 
The structure of network is presented in Fig. 2.  

PC0

 
Fig. 2. Structure of network used in experiments 

In current network the following equipment has been 
used: PC0 as FTP server – the transmitter of data TCP 
messages, and PC1/PC2 as FTP client – receiver of TCP 
data messages (TCP ACK sender), the transparent Ethernet 
bridge – BR, target router – R, and additional router – R0 
(Cisco 881) as well. For experiments two routers of 
different generations Cisco 881 and Cisco 1841 were used. 
The main difference between them is CPU power. All 
devices were connected with 100 Mbps Ethernet links 
(100BaseTx). The ACK filtering was implemented on BR 
device. It has been created on Linux based (2.6.32 kernel) 
PC with Ethernet bridging <brctl> application. This tool 
was taken because Linux bridging is faster, work as simple 
switch, and don't make significant impact to flow 
parameters comparing with routing.  

The ACK filtering has been pursued only in one 
direction from PC1/PC2 to PC0, whereas in opposite 
direction the traffic passed through BR without any 
alterations. Filtering was based on exact frame rate control 
with Committed Information Rate (CIR) and Committed 
Burst Size (CBS=5 kB). The last one was used to avoid 
degradation of congestion window on initial growth phase 
(1). Filtering was made using <tc> application, which 
drop/policed ACK messages if it exceeds specified rate. 
The scripting code of ACK filtering is shown in Fig. 3. 

01 tc qdisc add dev eth1 ingress

02 tc filter add dev eth1 parent ffff:0 
protocol all prio 1 u32 match u32 
0xaff0001 0xffffffff at 16 classid 
ffff:0 police index 2 rate 12500bps 
burst 102400 mpu 0 action drop/pass

03 tc filter add dev eth1 parent ffff:0 
protocol all prio 1 u32 match u32 
0x0 0x0 at 0 classid ffff:0 police 
index 3 rate 1bps burst 1 action 
drop/drop  

Fig. 3. Scripting source of tc policing  

The second router (R0) has been used on purpose to 
keep more realistic IP based network with all routing and 
switching functionalities. The target router parameters 
during the experiments with SNMP protocol were 
collected throw independent router interface. For data 
transmissions the FTP application has been used. In all 
experimental iterations file of 400 MB size was 
transferred. The data speed was controlled on PC0 (FTP 
server) with <tc> script, which shaped to desirable speed 
without packet loss (delay of traffic only). For this Token 
Bucket Filtering – TBF (RFC 5624) was used. 

Performance evaluation experiments 

The target of first experiment scenario was to find 
how the ACK filtering can influence the TCP performance 
and data transfer integrity. For this, a file of 400 MB size 
from PC0 to PC1 was repeatedly transferred (Fig. 2.). On 
the each iteration the ACK filtering rate (0%, 20%, 40%, 
60%, and 80%; values of the maximal ACK rate without 
filtering) was changed.     

As shown in Fig. 4 TCP message rate for entire 
period was stable in all iterations. The growth of message 
rate (1) is high and equal at all ACK drop values (events 
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up to ~3s). This occurred because of two reasons: W(t)C of 
used TCP version slightly depends tRTO (3) and ACK 
filtering is activated only after CBS is exceeded – when the 
W(t)C=W(t)max (1). At the end of transfer we have “decline” 
– the finish of data transfer. 
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Fig. 4. TCP messages rate during file transmission for various 
ACK drop values 

The result shows that ACK filtering does not affect 
data transfers of single TCP session. We observed that 
transfer remains stable for up to 80% of ACK drops. 
However, if losses are above 85% the ACK rate becomes 
less than 1/tRTO (3), and data rate degrades fatally. 
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Fig. 5. Cumulative growth of TCP segments count during file 
transmission for various ACK drop values  

The comparison of cumulative TCP segments (count 
of segments on TCP layer) and FTP bytes (count of data on 
FTP layer) rates during period (t) of file transfer is 
presented in Fig. 5. It is shown that on FTP and TCP layers 
(lines are coincident) the same amount of bytes was 
received at any given time period. Consequently, it is 
possible to do the suggestion, that count of duplicated 
ACK and TCP data retransmissions (3) are not increased 
respectively (Fig. 1: tRTT=tdata+tACK is less then tRTO). 

The second experiment goal was to find what kind of 
influence cumulative ACK mechanism has on network 
equipment performance. For this purpose a file transfer of 
400 MB, was performed and CPU load of router (Cisco 
881, Cisco 1841) was measured (Fig. 2.). The experiments 
were performed at various data rates (1, 4, 8, 16, 32, 65, 

and 90 Mbps) in scenarios with and without filtering and in 
scenario when 80% of ACK is filtered. 

As shown in Fig. 6 the CPU load is decreasing when 
the ACK filtering is used. The same situation is observable 
for both routers. It is clear that results do not depend on 
router type and amount of data in TCP message. It depends 
on amount of processed packets by the router CPU. This is 
confirming the results presented in [14]. Moreover, in Fig. 
6 is observable that CPU load utilization is linear, and 
depends on frame rate: if the TCP data rate increases, the 
ACK rate is increasing too. The functions of the CPU load 
curves are quite similar for both routers. The difference is 
only in designed CPU's power.      
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Fig. 6. Target routers CPU load for various FTP traffic rate (TCP 
goodput) when 80 % ACK is dropped 

The relation between target router performance and 
CPU load is shown in Fig. 7. Performance increase should 
be understood as relative CPU load reduction caused by 
employing of ACK filtering. With ACK drop of 80% the 
performance can be increased by 30%, comparing with 
case when CPU load is 25%, and ACK filtering is not 
used. Meanwhile, if we have the CPU load of 60% (more 
than routers overload threshold [14]) with 80% of ACK 
drop we can increase the performance by 32%. It means 
that in current situation CPU load will be approx. 40%. 
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The third experiment issue was to find how the ACK 
filtering can influence two concurrent and independent 
TCP sessions. During investigation the PC0 was used as 
FTP server and PC1/PC2 - as FTP clients. With each TCP 
session the 400 MB files were transferred. The ACK 
filtering was performed on both sessions simultaneously.  
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Fig. 8. TCP message rate during two files transmission: both 
sessions with 80% of ACK drops 

The dependence of two TCP sessions message rate 
during file transmissions is presented In Fig. 8. Graph 
clearly shows that both independent sessions remain 
concurrent and divide channel almost equally. In fact, this 
cannot be so, because TCP objective is not equal channel 
sharing. At 3s, as in situation with one session (Fig. 4), the 
TCP1 begins to increase the message rate according to 
W(t)C (1). While at 6s TCP2 session is starting too, and 
about 9s the message rate of both sessions becomes 
approx.: RTCP1 ≈ 44Mbps; RTCP2 ≈ 49Mbps; RTCP ≈ 93Mbps. 
While the TCP1 session is degraded due to congestion (2). 
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Fig. 9. Cumulative growth of TCP segments count during two file 
transmission: both sessions with 80% of ACK drops 

After 78s the TCP1 rate is decreasing since finishing 
of file transfer, while the TCP2 conversely starts to grow-
up rate (1). At 81s TCP2 is finishing transfer too. Current 
fine competition between two independent session’s show, 
that both of them from TCP point of view are working 
well, and the ACK filtering does not make significant 
influence on TCP functionality in current conditions.  

The dependence of cumulative data during two file 
transmissions is shown in Fig. 9. It can be seen that both 
sessions collect messages well in TCP layer and in 
application layer (Fig.1.). It means that TCP goodput 
(transmitted data to upper layer) of both sessions are close 
to maximal, while the count of duplicated ACK is minimal. 

TCP interoperability defines whether a protocol is 
fair to other TCP sessions. Therefore, it’s important to find 
how ACK filtering increases unfairness of TCP. For this 
purpose fourth experiment was performed. The scenario 
was the same as in previous, only the filtering for one 
session and the PC0 without shaping was used (Fig. 2.). 
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Fig. 10. TCP message rate during two files transmission: one 
session without ACK drop, and other with 80% of drops 

The dependence of message rate of two TCP sessions 
on file transmissions time is presented in Fig. 10. Graph 
shows that both sessions divide channel almost equally as 
in previous scenario. The insignificant unfairness between 
sessions was observed. But this is typical case for real 
network. To understand unfairness better, the extensive 
analysis must be done with various TCP versions. And this 
is the main issue of future investigations. 

Conclusions  

In current work the investigation of TCP functions 
and ACK filtering was presented. It is shown that TCP 
congestion window and acknowledgment mechanism are 
dependent processes with common variables. Therefore, 
the growth of network bandwidth is coherent with ACK 
rate: when the network capacity is increasing, the ACK 
rate on channel is increasing too. This leads to network 
equipment CPU performance degradation. To resolve this 
weakness the usage of ACK filtering was proposed.  

The experiments were performed to find how 
significantly number of ACK affects the router CPU and 
how impact of ACK filtering can influence the TCP 
functionality and performance. We conclude that: 

1. ACK filtering does not significantly affect the 
TCP data transfer in normal network conditions. The TCP 
data transfer remains stable for up to 80% of ACK drops. 
However, if losses are above 85% the ACK rate becomes 
less than 1/tRTO, and session is terminating immediately.  

2. The performance of router CPU depends on ACK 
count and can be increased with ACK filtering. The CPU 
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load utilization is linear, and depends on data rate: if the 
TCP data rate increases, the ACK rate is increasing too.  

3. On CPU load of 25% with 80% of ACK drop, it is 
possible to increase the router performance by 30%. 
Meanwhile, on CPU load of 60%, on the same filtering 
conditions, the performance can be increased by 32%. 

4. The ACK filtering can be used not only with 
single TCP session but also with concurrent sessions. 
Results show that two sessions work well, without any 
evident signs of the instabilities; although a slight 
unfairness among TCP sessions were observed. 

In conclusion, the presented results show that ACK 
filtering does not affect the functionality of TCP in normal 
network conditions, but allows more efficient use of 
network equipment. Therefore, to implement the suggested 
solution the investigation of  the ACK filtering influence 
on flows of other popular TCP versions, and the analysis of 
usage filtering on lossy channels, must be performed. 
These issues are the main of our future investigations. 
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The efficient usage of congestion control becomes significant as Internet traffic grows. The quality of congestion control greatly affects 
utilization efficiency of the data network equipment. This paper presents detailed analysis of interaction between congestion control and 
acknowledgment mechanism functions. Also analysis of possibilities to reduce the number of ACK messages with ACK filtering is presented. 
The presented results of experiments with real network are shows that data network router performance, without any considerable influence to 
TCP functionality can be significantly increased when the ACK filtering is used. Ill. 10, bibl. 17 (in English, abstracts in English, Russian and 
Lithuanian). 
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При увеличении интернет трафика увеличивается и значение управления перегрузками сети. От качества управления значительно 
зависит эффективность использования оборудования сетей передачи данных. В этой статье детально анализируются взаимодействия 
функций механизмов контроля переполнения и  подтверждения, а также возможности уменьшения генерируемых сообщений ACK 
при помощи фильтрирования. Предоставленные эксперименты на реальной сети подтверждают, что используя фильтрирование ACK 
возможно значительно увеличить производительность маршрутизаторов сетей без значительного воздействия на функциональность 
TCP. Ил. 10, библ. 17 (на английском языке; рефераты на английском, русском и литовском яз.). 

 
L. Pavilanskas, A. Statkus. TCP patvirtinimo mechanizmo įtakos maršrutizatoriaus našumui nustatytmas // Elektronika ir 
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 7(103). – P. 95–100. 

Didėjant interneto srautams, didėja ir tinklo perkrovų valdymo reikšmė. Nuo valdymo kokybės labai priklauso duomenų perdavimo tinklų 
įrenginių naudojimo efektyvumas. Šiame straipsnyje detaliai analizuojamos TCP protokolo perkrovimų valdymo ir patvirtinimo mechanizmų 
funkcijų sąveika bei galimybės filtravimu sumažinti generuojamų ACK pranešimų skaičių. Pateikti realiame tinkle atliktų eksperimentų 
rezultatai rodo, kad, filtruojant ACK ir nedarant didelės neigiamos įtakos TCP funkcionalumui, galima gerokai padidinti duomenų perdavimo 
tinklo maršrutizatorių našumą. Il. 10, bibl. 17 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 
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