
95

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 7(103)
 ELEKTRONIKA IR ELEKTROTECHNIKA

TELECOMMUNICATIONS ENGINEERING
T 180 ────────────────────────

TELEKOMUNIKACIJŲ INŽINERIJA

Evaluation of TCP Acknowledgment Mechanism Influence on Router
Performance
L. Pavilanskas, A. Statkus
Telecommunications Engineering Department, Vilnius Gediminas Technical University,
Naugarduko str. 41, LT-03227 Vilnius, Lithuania, e-mails: lukas.pavilanskas@el.vgtu.lt, arunas.statkus@teo.lt

Introduction

Nowadays with growth of data traffic [1], it is
essential to control channel congestion efficiently in
Internet for successful utilizing network resources (routers,
switches, links, and etc). The main protocol for current
objective is Transport Control Protocol (TCP) today. It is
reliable connection-oriented protocol, which implements
the flow control on heterogeneous network by means of a
sliding window, congestion avoidance, and
acknowledgment mechanisms, simultaneously. TCP runs
over more network technologies than any other protocol
and provides the highest degree of interoperability.

The main problem with TCP is that typical protocol
implementations (RFC 3782) are successful at low speed
(up to 100 Mbps) but it is unfit for high speed networks
due to slow grow-up of congestion window, and poor
evaluation of upper bound of the channel [2]. This is
because the congestion window growth function – W(t) has
square features on initial phase (RFC 2581) and depends
on channel delay: if latency is high, the congestion window
growth rate will be low. To eliminate the following
drawback, many TCP congestion control algorithms were
developed. Most common, oriented for large volumes of
data transfers, are the following: HSTCP (RFC 3649), Fast
(RFC 3782), STCP (RFC 3286), Cubic [3].

All of these versions also rely on end-to-end ACK
and congestion window [4], but general difference is that
W(t) is cubic-root on initial phase and depends on latency
marginally, comparing with typical versions. The
congestion window growth is defined in real-time and
depends on last congestion event – received ACK [3]. In
other words, the sender is allowed to increase the TCP data
rate for each incoming ACK. As a result, unhampered
transmission of ACK for successful flow control is very
important, and any ACK rate suspension can influence the
TCP functionality and performance [5–7].

In consequence, the growth of network bandwidth is
coherent with ACK message rate on the following TCP
operational scheme. When the network capacity is
increasing, the ACK rate on the channel is increasing too.

So, in high speed network we have another undesirable
feature – growth of technological expenditures [8].

Moreover, TCP is mainly used in Internet for bulk
traffic (HTTP, FTP, SMTP, IMAP, and etc) [9]. Bulk
traffic sources are sending large packets in one direction
only [10]. Therefore, uplink traffic is composed of short
packets as showed in [5]. In such conditions, encapsulated
Ethernet frame with TCP message without data (only ACK
flag and number) is 64 Bytes, not including the preamble.

The poor performance of short frame traffic is well
known and analyzed in detail [11], and [12]. This
degradation occurs for two reasons: technological
expenditures [8] and routers CPU overload [13]. The last
concerns to the fact that router CPU load depend on the
packet rate and not to the packet length [14]. It’s clear, that
on high speed networks this is observable better [13].
Therefore, with growth of bandwidth the TCP ACK
message rate is increasing too. For a large number of short
packets in traffic more efficient routers will be needed.
Hereby, in following situation the routers with slow CPUs
will become bottlenecks and will lead to the degradation of
network performance too. The critical threshold of router
functionality is ~ 45-50% of CPU load [15].

One of the ways to increase performance in modern
high speed networks is by lowering the number of TCP
ACK messages. This can be done through ACK filtering
mechanism [16], which is well known and used in
asymmetric and wireless networks environments [5], [6],
[7], but is considered to be inconsistent with TCP traffic.

The aim of current paper is to find, how ACK
filtering can influence the TCP functionality, and how
significant number of TCP ACK messages affects the
performance of the network channel – chain of the routers.

TCP acknowledgment mechanism

The acknowledgement mechanism is at the heart of
TCP and relies on demand for the receiver to communicate
with the sender by sending back an ACK as it receives
data. TCP uses a cumulative ACK technique (RFC 813).
The ACK number field in a TCP message header received
by the sender indicates that all bytes of data with sequence

96

numbers less than that value have been successfully
received (ACK’ed) by the destination application (Fig.1.
segments data1, data2 and ack1, ack2).

TCP

receiver
TCP

sender

tTCP_r

tRTT_1

tRTT_2

tRTT_n
(tickn)

Layer 3 network

data1(0-127)

data2(128-255)

data3(256-511)
data4(512-1023)

data5(1024-2047)

ack1(128)

ack2(256)

ack3(512)

ack4(512)
ack5(512)

ack6(5120)

ack7(7168)

Packet loss

Retransmission
data6(513-1023*)

D
uplicated A

C
K

Fast R
etransm

it

T
riple A

C
K

tapp

The destination application

data6

tdata

tTCP_s

tACK

Fig. 1. TCP operation and acknowledgment mechanism diagram

Normally TCP does not send an ACK the instant it
receives data. It delays ACK (RFC 2581), hoping to have
data going in the same direction. A typical TCP uses delay
of 200 ms and sends ACK for every other data message.
However, there is not much TCP traffic with bidirectional
data flows in Internet [9]. Delayed ACK is usable for an
interactive applications (Telnet, SSH, and etc.) only [10].

The TCP sender’s uses ACK to estimate how much
data can be outstanding in the network without packets
being lost in routers queues. For this purpose it uses a
congestion window, which growth function W(t) depends
on the feedback sender gets from the network through the
received ACK. After initializing the TCP sender is allowed
to increase the W(t) for each incoming ACK .

In this paper for research we use TCP Cubic were the
congestion window is determined by function [3]

max

3
3 max

C)()()(tW
C

tWtCtW +








 ⋅
−=

β , (1)

where C is a scaling factor, t [s] – the elapsed time from
the last window reduction, W(t)max [bytes] – the maximal
window size before the last reduction; β – a constant
multiplication decrease factor applied for W(t)C reduction
to minimal at the time of loss event (β·W(t)max) [3]

maxmaxmin)()()(tWtWtW ⋅−= β . (2)

Consequently, the ACK reception for TCP sender is
very important process. Especially at initial phase, where
growth of W(t)C is very intense [3] and ACK loss can lead
to degradation of the congestion window to its minimal
value. Meanwhile, on phase when W(t)C is close or equal
to maximal value - W(t)max, growth becomes minimal (2)
and congestion event becomes less important. In that case,

ACK is mainly used for detection of data message loss and
this is a second very important function of the TCP
acknowledgment mechanism (RFC 813).

The TCP data message retransmission can occur
because of two main reasons [17]: after expiration of
retransmission timer (RFC 813) and after receiving three
or more duplicated ACK (Fig. 1: ack3, ack4, ack5). In first
case the retransmission timer expires when no new data is
acknowledged for a set of threshold time (RFC 2581).

The retransmission timeout (tRTO) is taken as a loss
indication, and it triggers retransmission of the
unacknowledged segments. The threshold time during
which the confirming ACK message must be received is

RTTRTTRTO 4 σ⋅+= tt , (3)

where tRTT is the average of time of successful TCP
message transmission (Fig. 1: tRTT measurements); σRTT –
the root-mean-square of deviation of tRTT.

If during tRTO the ACK is not received, the data
segments loss will be detected and the TCP sender will set
W(t)C to 1 segment (RFC 2988); since tRTO indicate that
channel utilization has changed dramatically [17].

Second reason occurs after receiving three or more
duplicated ACK [17]. As shown in Fig. 1 the message
data4 was lost. The TCP receiver accepts messages data3,
data5, data6, and so on (Fig.1.), but not data4. The ack4,
ack5 with same ACK number 512 were sent for received
messages. After duplicated ACK is detected, the
transmitter waits for tRTO to expire. TCP does not yet know
whether a duplicate ACK is caused by a loss or just
reordering of segments. TCP sender waits the timeout (3)
and assumes that if there is just a reordering it will not get
ACK with number 512 anymore. However, after a while, a
third duplicated ACK is received in a row (ack5). It is a
strong indication that segments have been lost. TCP
performs retransmission of segments 513-1023 with data6,
without waiting for a tRTO to expire. After this the sender
maintains the number of outstanding segments by sending
a new segment for each incoming ACK (1). It should be
noted that only retransmission of identified as lost (timed-
out) TCP segments, are implemented in the "conservative"
TCP versions (RFC 3517). Meanwhile, in "aggressive"
TCP implementation after the loss, all unacknowledged
messages are retransmitted [17].

The TCP contains only a general assertion that data
should be acknowledged promptly, but gives no more
specific indication as to how quickly and as how frequently
an ACK must be sent. In RFC’s clearly is indicated, that
current mechanism must maintain two very important
functions: to prevent data retransmission, and as soon as
possible to make ACK to permitting further data to be sent.
In addition to this argument, the fact that ACK message are
very important in the initial phase (1) of data transmission
and the fact that rate of ACK rely on data rate (segments
loss due to receiving 3 or more duplicated ACK) and
cannot be less than 1/tRTO (3), must be evaluated.

ACK filtering technique

The concept of ACK filtering was discussed well in
[16]. The idea is fairly simple. When router needs to send
the current ACK, it scans queue for any early TCP ACK. If

97

ACK already exist in the queue, simply drop them before a
queuing the new ACK. Since acknowledgments are
cumulative, the newest one obsoletes all older ACK. So,
there's no need for more than one per connection to ever be
in the queue. Dropping old ACK when a new one is
queued means there would never be more than one ACK
on the queue at any time, so this is pretty much the same as
replacing the earlier ACK with the newer one.

In the same reference [16] the main drawbacks of
ACK filtering were reviewed. It is noted that ACK
clocking scheme, which for both drop and congestion
control is used, with the ACK filtering can be destroyed.
The current propositions are compelling. However, the
discussed apprehensions can be challenged with arguments
of [5], where the TCP performance in the asymmetric links
was analyzed. It is shown that asymmetry affects the TCP
performance, because it relies on feedback of cumulative
ACK from the receiver. In addition, typical TCP is ACK
clocked, so the arrivals of ACK on the reverse channel
have significant effects on the forward channel throughput.
In the networks with bandwidth asymmetry the ACK
filtering can work well. This improves the forward TCP
throughput and the fairness of competing connections
greatly. In paper ACK filtering was modeled on Opnet.

Work [6] presents a quite similar study. Analysis of
unfairness problem between TCP upstream data and ACK
downstream on the unevenly shared wireless channel is
provided. It is shown that ACK filtering increases 802.11
channel utilization without any dependence on tRTO (3).

The extensive simulations with ACK filtering in [7]
were proposed. It is demonstrated that lowering ACK
number can improved TCP performance significantly:
achieving up to 25% gain in chain networks and 35% in a
complex grid network, compare with typical TCP. In work
the ACK filtering motivation follows from fact that short
ACK messages consume channel capacity comparable to
data packets when the transmission is high rate.

The methodology of experiments

In order to find out, what real influence the ACK
filtering makes to the TCP functionality and how it affects
the performance of the network channel devices (routers)
an experiments were performed. For this reason Ethernet
network with IP routing, and TCP session between two
independent nodes (PC0 and PC1/PC2, Linux OS, 2.6.32
kernel, and TCP Cubic version enabled [3]) were created.
The structure of network is presented in Fig. 2.

PC0

Fig. 2. Structure of network used in experiments

In current network the following equipment has been
used: PC0 as FTP server – the transmitter of data TCP
messages, and PC1/PC2 as FTP client – receiver of TCP
data messages (TCP ACK sender), the transparent Ethernet
bridge – BR, target router – R, and additional router – R0
(Cisco 881) as well. For experiments two routers of
different generations Cisco 881 and Cisco 1841 were used.
The main difference between them is CPU power. All
devices were connected with 100 Mbps Ethernet links
(100BaseTx). The ACK filtering was implemented on BR
device. It has been created on Linux based (2.6.32 kernel)
PC with Ethernet bridging <brctl> application. This tool
was taken because Linux bridging is faster, work as simple
switch, and don't make significant impact to flow
parameters comparing with routing.

The ACK filtering has been pursued only in one
direction from PC1/PC2 to PC0, whereas in opposite
direction the traffic passed through BR without any
alterations. Filtering was based on exact frame rate control
with Committed Information Rate (CIR) and Committed
Burst Size (CBS=5 kB). The last one was used to avoid
degradation of congestion window on initial growth phase
(1). Filtering was made using <tc> application, which
drop/policed ACK messages if it exceeds specified rate.
The scripting code of ACK filtering is shown in Fig. 3.

01 tc qdisc add dev eth1 ingress

02 tc filter add dev eth1 parent ffff:0
protocol all prio 1 u32 match u32
0xaff0001 0xffffffff at 16 classid
ffff:0 police index 2 rate 12500bps
burst 102400 mpu 0 action drop/pass

03 tc filter add dev eth1 parent ffff:0
protocol all prio 1 u32 match u32
0x0 0x0 at 0 classid ffff:0 police
index 3 rate 1bps burst 1 action
drop/drop

Fig. 3. Scripting source of tc policing

The second router (R0) has been used on purpose to
keep more realistic IP based network with all routing and
switching functionalities. The target router parameters
during the experiments with SNMP protocol were
collected throw independent router interface. For data
transmissions the FTP application has been used. In all
experimental iterations file of 400 MB size was
transferred. The data speed was controlled on PC0 (FTP
server) with <tc> script, which shaped to desirable speed
without packet loss (delay of traffic only). For this Token
Bucket Filtering – TBF (RFC 5624) was used.

Performance evaluation experiments

The target of first experiment scenario was to find
how the ACK filtering can influence the TCP performance
and data transfer integrity. For this, a file of 400 MB size
from PC0 to PC1 was repeatedly transferred (Fig. 2.). On
the each iteration the ACK filtering rate (0%, 20%, 40%,
60%, and 80%; values of the maximal ACK rate without
filtering) was changed.

As shown in Fig. 4 TCP message rate for entire
period was stable in all iterations. The growth of message
rate (1) is high and equal at all ACK drop values (events

98

up to ~3s). This occurred because of two reasons: W(t)C of
used TCP version slightly depends tRTO (3) and ACK
filtering is activated only after CBS is exceeded – when the
W(t)C=W(t)max (1). At the end of transfer we have “decline”
– the finish of data transfer.

2.8 3.0 3.2 3.4 3.6 41 41.2 41.4 41.6 41.8 42

1

2

3

4

5

6

7

8 TCP DATA

 no ACK drop

 20% ACK drop
 40% ACK drop
 60% ACK drop
 80% ACK drop

TC
P

m
es

sa
ge

s x
10

3 , p
ps

t, s
Fig. 4. TCP messages rate during file transmission for various
ACK drop values

The result shows that ACK filtering does not affect
data transfers of single TCP session. We observed that
transfer remains stable for up to 80% of ACK drops.
However, if losses are above 85% the ACK rate becomes
less than 1/tRTO (3), and data rate degrades fatally.

0 5 10 15 20 25 30 35 40 45

0.1

0.4

1.7

6.7

26.8

107.4

429.5

TCP DATA (TCP & App. layers)

80% ACK drop
 60% ACK drop

40% ACK drop

 20% ACK drop no ACK drop

TC
P

se
gm

en
ts,

 B
yt

es
 x

10
6

t, s
Fig. 5. Cumulative growth of TCP segments count during file
transmission for various ACK drop values

The comparison of cumulative TCP segments (count
of segments on TCP layer) and FTP bytes (count of data on
FTP layer) rates during period (t) of file transfer is
presented in Fig. 5. It is shown that on FTP and TCP layers
(lines are coincident) the same amount of bytes was
received at any given time period. Consequently, it is
possible to do the suggestion, that count of duplicated
ACK and TCP data retransmissions (3) are not increased
respectively (Fig. 1: tRTT=tdata+tACK is less then tRTO).

The second experiment goal was to find what kind of
influence cumulative ACK mechanism has on network
equipment performance. For this purpose a file transfer of
400 MB, was performed and CPU load of router (Cisco
881, Cisco 1841) was measured (Fig. 2.). The experiments
were performed at various data rates (1, 4, 8, 16, 32, 65,

and 90 Mbps) in scenarios with and without filtering and in
scenario when 80% of ACK is filtered.

As shown in Fig. 6 the CPU load is decreasing when
the ACK filtering is used. The same situation is observable
for both routers. It is clear that results do not depend on
router type and amount of data in TCP message. It depends
on amount of processed packets by the router CPU. This is
confirming the results presented in [14]. Moreover, in Fig.
6 is observable that CPU load utilization is linear, and
depends on frame rate: if the TCP data rate increases, the
ACK rate is increasing too. The functions of the CPU load
curves are quite similar for both routers. The difference is
only in designed CPU's power.

10 20 30 40 50 60 70 80 90

20

40

60

80

100

CP
U

Lo
ad

, %

TCP goodput, Mbps

 Cisco 881, Without ACK drop
 Cisco 881, With ACK drop
 Cisco 1841, Without ACK drop
 Cisco 1841, With ACK drop

Fig. 6. Target routers CPU load for various FTP traffic rate (TCP
goodput) when 80 % ACK is dropped

The relation between target router performance and
CPU load is shown in Fig. 7. Performance increase should
be understood as relative CPU load reduction caused by
employing of ACK filtering. With ACK drop of 80% the
performance can be increased by 30%, comparing with
case when CPU load is 25%, and ACK filtering is not
used. Meanwhile, if we have the CPU load of 60% (more
than routers overload threshold [14]) with 80% of ACK
drop we can increase the performance by 32%. It means
that in current situation CPU load will be approx. 40%.

10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

no ACK drop

20% ACK drop

40% ACK drop

 60% ACK drop

 80% ACK drop

Ro
ut

er
 p

er
fo

rm
an

ce
 in

cr
ea

se
, %

CPU Load, %
100

Fig. 7. Performance increase on target router CPU load for
various ACK drop values

99

The third experiment issue was to find how the ACK
filtering can influence two concurrent and independent
TCP sessions. During investigation the PC0 was used as
FTP server and PC1/PC2 - as FTP clients. With each TCP
session the 400 MB files were transferred. The ACK
filtering was performed on both sessions simultaneously.

2 4 6 8 10 12 14 16 18 72 74 76 78 80 82

1

2

3

4

5

6

7

8

9

TCP 1, DATA

TCP 2, DATATC
P

m
es

sa
ge

s x
10

3 , p
ps

t, s

TCP 1/2, ACK (drop 80%)

Fig. 8. TCP message rate during two files transmission: both
sessions with 80% of ACK drops

The dependence of two TCP sessions message rate
during file transmissions is presented In Fig. 8. Graph
clearly shows that both independent sessions remain
concurrent and divide channel almost equally. In fact, this
cannot be so, because TCP objective is not equal channel
sharing. At 3s, as in situation with one session (Fig. 4), the
TCP1 begins to increase the message rate according to
W(t)C (1). While at 6s TCP2 session is starting too, and
about 9s the message rate of both sessions becomes
approx.: RTCP1 ≈ 44Mbps; RTCP2 ≈ 49Mbps; RTCP ≈ 93Mbps.
While the TCP1 session is degraded due to congestion (2).

0 10 20 30 40 50 60 70 80

0.10

0.42

1.68

6.71

26.84

107.37

429.50

TCP 1, DATA

TCP 2, ACKTCP 1, ACK

TC
P

se
gm

en
ts,

 B
yt

es
 x

10
6

t, s

TCP 2, DATA

Fig. 9. Cumulative growth of TCP segments count during two file
transmission: both sessions with 80% of ACK drops

After 78s the TCP1 rate is decreasing since finishing
of file transfer, while the TCP2 conversely starts to grow-
up rate (1). At 81s TCP2 is finishing transfer too. Current
fine competition between two independent session’s show,
that both of them from TCP point of view are working
well, and the ACK filtering does not make significant
influence on TCP functionality in current conditions.

The dependence of cumulative data during two file
transmissions is shown in Fig. 9. It can be seen that both
sessions collect messages well in TCP layer and in
application layer (Fig.1.). It means that TCP goodput
(transmitted data to upper layer) of both sessions are close
to maximal, while the count of duplicated ACK is minimal.

TCP interoperability defines whether a protocol is
fair to other TCP sessions. Therefore, it’s important to find
how ACK filtering increases unfairness of TCP. For this
purpose fourth experiment was performed. The scenario
was the same as in previous, only the filtering for one
session and the PC0 without shaping was used (Fig. 2.).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

7

8

9

TC
P

m
es

sa
ge

s x
10

3 , p
ps

t, s

TCP 1, DATA

TCP 2, DATA
 ACK1

(drop 80%)
ACK2 (no drop)

Fig. 10. TCP message rate during two files transmission: one
session without ACK drop, and other with 80% of drops

The dependence of message rate of two TCP sessions
on file transmissions time is presented in Fig. 10. Graph
shows that both sessions divide channel almost equally as
in previous scenario. The insignificant unfairness between
sessions was observed. But this is typical case for real
network. To understand unfairness better, the extensive
analysis must be done with various TCP versions. And this
is the main issue of future investigations.

Conclusions

In current work the investigation of TCP functions
and ACK filtering was presented. It is shown that TCP
congestion window and acknowledgment mechanism are
dependent processes with common variables. Therefore,
the growth of network bandwidth is coherent with ACK
rate: when the network capacity is increasing, the ACK
rate on channel is increasing too. This leads to network
equipment CPU performance degradation. To resolve this
weakness the usage of ACK filtering was proposed.

The experiments were performed to find how
significantly number of ACK affects the router CPU and
how impact of ACK filtering can influence the TCP
functionality and performance. We conclude that:

1. ACK filtering does not significantly affect the
TCP data transfer in normal network conditions. The TCP
data transfer remains stable for up to 80% of ACK drops.
However, if losses are above 85% the ACK rate becomes
less than 1/tRTO, and session is terminating immediately.

2. The performance of router CPU depends on ACK
count and can be increased with ACK filtering. The CPU

100

load utilization is linear, and depends on data rate: if the
TCP data rate increases, the ACK rate is increasing too.

3. On CPU load of 25% with 80% of ACK drop, it is
possible to increase the router performance by 30%.
Meanwhile, on CPU load of 60%, on the same filtering
conditions, the performance can be increased by 32%.

4. The ACK filtering can be used not only with
single TCP session but also with concurrent sessions.
Results show that two sessions work well, without any
evident signs of the instabilities; although a slight
unfairness among TCP sessions were observed.

In conclusion, the presented results show that ACK
filtering does not affect the functionality of TCP in normal
network conditions, but allows more efficient use of
network equipment. Therefore, to implement the suggested
solution the investigation of the ACK filtering influence
on flows of other popular TCP versions, and the analysis of
usage filtering on lossy channels, must be performed.
These issues are the main of our future investigations.

References

1. Eidukas D., Valinevičius A., Vilutis G., Kilius Š., Vasylius
T. Information Network Loading Evaluation // Electronics
and Electrical Engineering. – Kaunas: Technologija, 2005. –
No. 8(64). – P. 22–26.

2. Dalton L. A., Isen C. A Study on High Speed TCP Protocols
// Proc. IEEE: GLOBECOM. – 2004, – Vol. 2. – P. 851–855.

3. Sangtae H., Injong R., Lisong X. CUBIC: A New TCP–
Friendly High–Speed TCP Variant // Proc. IEEE: SIGOPS. –
2008. – Vol. 42. – No. 5. – P. 64–74.

4. Jacobson V. Congestion avoidance and control // in Proc.
Conference IEEE: SIGCOMM. – 1988. – Vol. 1. – P. 314–
329.

5. Wu' H., Wu' J., Cheng' Sh., Ma J. ACK Filtering on
Bandwidth Asymmetry Networks // Proc. IEEE:
APCC/OECC. – 1999. – P. 175–178.

6. Keceli F., Inan I., Ayanoglu E. TCP ACK Congestion
Control and Filtering for Fairness Provision in the Uplink of
IEEE 802.11 Infrastructure Basic Service Set // in Proc.
Conference IEEE: ICC. – 2007. – P. 4512–4517.

7. Chen B., Marsic I., Shao H–R., Miller R. Improved
Delayed ACK for TCP over Multi–hop Wireless Networks //
Proc. IEEE: WCNC. – 2009. – P. 1–5.

8. Kajackas A., Pavilanskas L. Analysis of the Technological
Expenditures of Common WLAN Models // Electronics and
Electrical Engineering. Kaunas: Technologija, 2006. – No.
8(72). – P. 19–24.

9. Kim, H., Claffy, K., Fomenkov, M., Barman, D.,
Faloutsos, M., Lee, K. Internet traffic classification
demystified: myths, caveats, and the best practices // In Proc.
IEEE: CoNEXT. – New York: ACM, 2008. – P. 1–12.

10. Caceres R., Danzig P. B., Jamin S., Mitzel D. J.
Characteristics Of Wide–Area TCP/IP Conversations // Proc.
IEEE: ACM SIGCOMM. – 1991. – P. 101–112.

11. Xiao Y., Rosdahl J. Throughput and delay limits of IEEE
802.11 // IEEE: Comm. Letters, 2002. – Vol.6. – P. 355–357.

12. Rindzevicius R., Tervydis P., Narbutaite L., Pilkauskas V.
Performance Analysis of Data Packet Transmission Network
with the Unreliable Transmission Channels // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2008. – No.
4(84). – P. 53–58.

13. Bencivenni M., Carbone A., Fella A., Galli D., Marconi
U., Peco G., Perazzini S., Vagnoni V. High rate packet
transmission on 10 Gbit/s Ethernet LAN using commodity
hardware // Proc. NPSS: Real Time. – 2009. – P. 167–182.

14. Paredes–Farrera M., Fleury M., Ghanbari M. Router
Response to Traffic at a Bottleneck Link // in Proc. 2nd Int.
Conference IEEE: TridentCOM. – 2006. – P. 4–41.

15. Ogawa Y., Nakaya A. Estimating the Performance of a
Large Enterprise Network for the Updating of Routing
Information // in Proc. Conference Workshop IEEE: IP
Operations and Management. – 2002. – P. 161–165.

16. Karn P. Dropping TCP ACK’s // Mailing list. – 1996 [
online: ftp://ftp.isi.edu].

17. Jacobson V. Congestion avoidance and control // in Proc.
Conference SIGCOMM’ 88: ACM Special Interest Grp. on
Data Comm. – New York: ACM, 1988. – P. 314–329.

Received 2010 02 11

L. Pavilanskas, A. Statkus. Evaluation of TCP Acknowledgment Mechanism Influence on Router Performance // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2010. – No. 7(103). – P. 95–100.

The efficient usage of congestion control becomes significant as Internet traffic grows. The quality of congestion control greatly affects
utilization efficiency of the data network equipment. This paper presents detailed analysis of interaction between congestion control and
acknowledgment mechanism functions. Also analysis of possibilities to reduce the number of ACK messages with ACK filtering is presented.
The presented results of experiments with real network are shows that data network router performance, without any considerable influence to
TCP functionality can be significantly increased when the ACK filtering is used. Ill. 10, bibl. 17 (in English, abstracts in English, Russian and
Lithuanian).

Л. Павиланскас, А. Статкус. Оценка влияния механизма TCP подтверждения на производительность маршрутизатора //
Электроника и электротехника. – Каунас: Технология, 2010. – № 7(103). – C. 95–100.

При увеличении интернет трафика увеличивается и значение управления перегрузками сети. От качества управления значительно
зависит эффективность использования оборудования сетей передачи данных. В этой статье детально анализируются взаимодействия
функций механизмов контроля переполнения и подтверждения, а также возможности уменьшения генерируемых сообщений ACK
при помощи фильтрирования. Предоставленные эксперименты на реальной сети подтверждают, что используя фильтрирование ACK
возможно значительно увеличить производительность маршрутизаторов сетей без значительного воздействия на функциональность
TCP. Ил. 10, библ. 17 (на английском языке; рефераты на английском, русском и литовском яз.).

L. Pavilanskas, A. Statkus. TCP patvirtinimo mechanizmo įtakos maršrutizatoriaus našumui nustatytmas // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 7(103). – P. 95–100.

Didėjant interneto srautams, didėja ir tinklo perkrovų valdymo reikšmė. Nuo valdymo kokybės labai priklauso duomenų perdavimo tinklų
įrenginių naudojimo efektyvumas. Šiame straipsnyje detaliai analizuojamos TCP protokolo perkrovimų valdymo ir patvirtinimo mechanizmų
funkcijų sąveika bei galimybės filtravimu sumažinti generuojamų ACK pranešimų skaičių. Pateikti realiame tinkle atliktų eksperimentų
rezultatai rodo, kad, filtruojant ACK ir nedarant didelės neigiamos įtakos TCP funkcionalumui, galima gerokai padidinti duomenų perdavimo
tinklo maršrutizatorių našumą. Il. 10, bibl. 17 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

	L. Pavilanskas, A. Statkus
	Introduction
	TCP acknowledgment mechanism
	Fig. 1. TCP operation and acknowledgment mechanism diagram
	ACK filtering technique
	The methodology of experiments
	Fig. 2. Structure of network used in experiments
	Fig. 3. Scripting source of tc policing
	Performance evaluation experiments
	Conclusions
	References

