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Introduction 

 
Present-day circuits manufacturing is expected to 

deliver top-class product quality in the shortest time frame 
possible. Product might be finished faster by reducing time 
needed for various stages of crafting process, like design, 
implementation, test generation, etc. This can be done by 
using automated design tools, various chip size 
optimization techniques and more accurate, reliable and 
speedy tests.  

Concurrent design and test generation may come in 
hand. Normally, a circuit is tested after it is synthesized 
and burned on a chip. This step is important, and can not 
be avoided. The manufacturing process is displayed in 
Fig.-1. Best case scenario is when test cases are ready at 
the time of chips’ completion and the test generation 
process does not require any more time. Various software 
prototypes emulating the designed chip can be made before 
and during the specification generation phase. It helps to 
find design flaws and detect errors early in the process.[10]  

Chip fabrication process is as follows: 
 

 
Fig. 1. Stages of chip manufacturing 

Test generation can be moved next to specification 
generation and design capture phases. Test cases are 
generated replacing not-yet-existing chip with it’s software 
prototype.[9] 

To test a chip or it’s software prototype, a set of valid 
input signals must be known. System boots up into 
unknown state. To start testing, system must be in a fixed 
state. Only then signal inputs can be sent and results 
evaluated. If expected and actual results match – the test 
passes. If not, there is a fault in fabricated chip. To switch 
system into a fixed state, a reset sequence must be found. 

There are two main ways to reset a system into a 
fixed state: send a reset signal or signals; use a DFT 
(Design for testability) methods. DFT use additional input 

line/lines to send required logical value straight into 
memory elements. Therefore, all required memory 
elements can be set to a known and needed state. Reset 
sequence sends a system from any/random booted state 
into  fixed state. Both methods have their advantages and 
disadvantages. DFT offers fast and convenient solution, 
but it has it’s disadvantages – extra inputs and additional 
hardware are required for memory elements. By allowing 
to set the system into required state, DFT allows better 
chip coverage while searching for faults. Reset sequence 
does not require extra input lines, but the fixed state it 
transfers system to might not be enough. Some critical chip 
sections and paths might get left out and/or unreachable 
from this fixed state, and untested. 

Test case generation for testing a software prototype 
and test pattern generation for a manufactured system-on-
chip differs.  

3-value logic (0, 1, x – unknown) used  by test 
generation on gate level for hardware testing is a problem 
when testing software prototypes. Using this logic in 
software prototypes explodes the number of if statements 
required to emulate the chip’s logic. This limitation 
increases the difficulty of the problem. 

Test generation using internal chip’s structure is not 
available at the design phase of the chip, as only software 
prototypes may exist. The chip itself is not manufactured 
yet, and the exact number of memory elements is not 
known yet. It will be the fabrication algorithm which 
decides on how to assemble available logical elements, so 
that they do the required calculations. [11] 

If the chip’s internal architecture is available, it is 
popular to analyze it and determine various factors 
influencing its results, like logic element placement 
priorities and such. By removing non essential logical 
elements or merging them into separate entities it is 
possible to reduce the chip size and the total state space. 
This reduction results in a smaller scope. 

A reset sequence is needed to generate test cases for 
the chip emulating software prototype A set of input 
signals turn system’s memory elements into known state, 
which is unknown at the time of chip’s power-up. 
Therefore, without a known starting state a chip emulating 
software prototype may not be tested. It is possible that 
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system-on-chip fires-up into a known state, which 
eliminates the need of a reset sequence. 

To test a software program, test cases are used. It’s a 
set of variables and conditions which help determine if 
work of the system is correct or not. An oracle is a 
mechanism used to determine if a system passed or failed a 
test. 

 
Preceding work 
  

A large portion of the research work is devoted to 
synchronizing circuits using chip’s known internal 
structure and the connections between logical elements. In 
this case, irrelevant elements and element groups may be 
removed, identical states identifies (and removed, thus 
reducing the overall chip size), relations between memory 
elements investigated and so on.  

Chip’s structure is unavailable when using software 
prototypes which emulate a system-on-chip. Therefore 
some of the preceding works create solutions that are not 
applicable whilst using prototypes.[11] 

According to [1], a reset sequence can be difficult or 
impossible to find due to logical and conditional loops 
present in manufactured chip’s structure. Structural self-
loop forms when an input of a flip-flop or a trigger is 
determined by its output alone. In this case, trigger is 
removed from the main structure using a reset line. The 
logical self-loops are the structural loops that appear after 
part of triggers are already synchronized.[1] The authors 
suggest using partial reset (DFT technique), if a full reset is 
not found or not existing. Part of all triggers is selected for 
a forced reset. They are selected after the circuit is 
analyzed and logical or conditional loops found. According 
to [1] this technique allows to synchronize largest 
ISCAS’89 circuits. 

A synchronization tree method may be used to 
generate all the resetting sequences of the shortest length 
[2]. This method checks if the circuit is synchronizable 
first. All input combinations are required to form such a 
tree, therefore this method is not practical for large chips. 

Wehbeg and Saab use logical and functional 
synchronization in their work [3]. Partitioning of the chip 
is used, considering relationships between the memory 
elements. Logical method is tried first. If it fails – 
functional is used.  

Reset sequences have their disadvantages; i.e. a set of 
states that can be reached using reset sequences may be 
limited [4]; critical states that must be tested may become 
unreachable. A reset sequence may not exist because of 
existing chip fault. In these cases, a DFT technique is 
needed to control the chip state and detect faults whose 
detection requires specific states. 

M. Kein offers a method to quickly check if a given 
circuit is resetable or not [5] 

An approach to finding reset sequences using ant 
colony optimizations is also presented [6]. It appears, that 
nature solved the problem of finding the shortest path from 
point A to point pretty well. This article explains how ants 
find shortest route to food supplies scattered around in vast 
territories. It appears that they use specific scent – 
pheromone, which is left along the trail by the ant scouts. 

Other ants follow this scent, which marks the shortest/best 
path found.  The scent decays with time, and must be 
renewed. If a new better path is found, the path is altered. 
It is called pheromone updating. In this article, such 
approach is used to find shortest reset sequences in 
systems-on-chips. System-on-chip’s internal architecture is 
used. Results are provided for two different algorithms [6] 
and [7].  

Another algorithm is presented in [8] for partial reset 
of large circuits, as well as results for ISCAS’89 circuits. 
Chip’s internal architecture is used. 

A chip may not have a reset sequence. Various 
methods end up offering partial reset as a faster and 
simpler way to achieve results. A partial reset is a set of 
signals with some extra input lines to reset “hard to reset” 
or “impossible to reset” triggers [8]. 

 
Calculation scope and data sets reduction 
  

The amount of calculation required for building a 
binary tree or full scan of large circuits grows 
exponentially as the number of triggers increase. 5 inputs 
and 3 triggers would result in a state space size of 8 and 32 
inputs. 256 computation cycles are required to test state to 
state transitions for all possible input/state combinations. 
14 inputs and 6 triggers result in 1’048’576 computation 
cycles. s35932 circuit from ISCAS’89 would require 
5,1985515586282147693995918471419e+530 
computation cycles for a full test. 

In this article we present a basic algorithm based on 
software prototype emulating operation of a circuit. It is 
based on random generation of input signals and trigger 
states. After a reset candidate is found, it is validated using 
greatly increased state space. Generated sets are only a part 
of the whole set of possible inputs and states. Therefore, all 
results are based on heuristics or assumption. The primary 
reduction in generated sets removes the need for huge 
amounts of calculations mentioned above. If reset 
candidate passes validation, one can assume that a reset 
sequence is found. This may or may not be true, as only 
part of whole state space has been tried.   

Circuit gate level model use 3-value logics (0,1, x-
unknown), where software prototype can only use 0 and 1. 
This increases the number of checks required. 

Tests have been made using ISCAS’89 circuits and 
experimental results are presented. Some circuits may be 
reset using 1 input signal or word, while others require 
more. Some circuits may not be fully reset using a reset 
signal. In this case, a partial reset may be an option [1]. 

Various ISCAS’89 circuit emulating prototypes were 
used for experiments. The main goal was to find a full 
reset sequence, which turns all prototypes’ memory 
elements into fixed state, no matter what the starting values 
of these memory elements were before reset sequence was 
applied. Such a sequence was not found for all available 
prototypes. Some of them were only partially reset. For 
some circuits (namely s510) it was not possible to switch 
even a single memory element into a fixed state. 

Time is needed for reset sequence algorithm to 
produce results. The bigger the circuit, more time is 
needed. An exception might be circuit no s35932, which 
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resets gracefully. This might be due to one of input pins 
being a reset line for the entire circuit. 

Due to large amount of time required for larger 
circuits, an idea of set reduction was introduced. The idea 
is that if a reset signal is able to bring a system into a fixed 
state from a set of tens of starting states, it might do that 
with thousands of starting states. I.e. if there are 10 starting 
states and 1 reset input candidate which switch the system 
from all 10 starting states into a single fixed state, it might 
do the same for 100, 1000, 10’000 (and so on) starting 
states. 

It is possible to greatly reduce the calculation scope 
by applying each input signal from a set of input signals to 
reduced set of states and analyzing results.  

Once a reset candidate is found, it is re-validated 
against a large number of starting states. This allows 
reducing the amount of work required, as the number of 
calculations for state-input-state transitions is reduced. 
 
Proposed algorithm 
 

Full circuit test is a difficult task, as explained in 
previous section. Therefore, a reduced size approach was 
used in reset sequence finding algorithm. The main idea 
behind it is: if the algorithm finds a reset sequence for 
small set of trigger states, and validates the same reset 
signal against much larger set of trigger states, then we 
may say this is a resetting sequence for the circuit used. 
Once again – this method is based on assumptions. Not all 
possible input signals and triggers states were tested, so, 
there is always a possibility, that results may or may not be 
correct with sets that were not used in calculations. 

Algorithm steps are as follows: 
1. Algorithm generates a medium sized set of input 

patters to send into the software prototype emulating the 
circuit. More input patterns increase the chance to find 
best-possible reset candidate, but also increases number of 
calculations required and time required to produce results. 
In experiments, a set of 300 input patterns were used. 

2. Small set of trigger states are generated. Bigger 
sets produce more reliable results and increase probability 
that validation will pass successfully. This also increases 
calculation time. Smaller sets result in faster completion, 
but provides more false-positive reset candidates. In 
experiments, a set of 20 states were used. 

3. Each input signal is matched against each one of 
trigger states and the new state is calculated. This is the 
state into which system transfers to from a previous state 
after an input pattern is applied. 

4. For each input pattern, resulting states are 
analyzed and number of fixed triggers calculated. If this 
number equals total number of triggers, then a reset 
candidate is found. If not, next input pattern is used for 
calculations.  

5. If a better (initializes more triggers than other 
input patterns tried before) reset-candidate is found, it is 
saved as a best one. 

6. A very large (compared to starting set) set of 
states are generated. In experiments, 50’000 states were 
used.  

7. Best reset-candidate is used with this large set of 
trigger sets to calculate new system states. (Steps 3 and 4). 

8. If this input pattern validates – an initializing 
pattern has been found. 
 

 
Fig. 2. Proposed algorithm 

Experimental results 
 

This algorithm was tested using ISCAS’89 circuits.  
Results show, that this algorithm (named PROTO) 

performs better or at least as-good-as 3 other algorithms 
provided by other researchers. This article’s algorithm 
operates under increased difficulty, because internal 
structure of the chip is not known. Therefore, many 
techniques employed by other researchers are unavailable. 

Partial reset algorithm only provides partial results 
(for those circuits that did not require  partial reset and full 
reset sequence was found). 

Result table 1 displays experimental results using 
proposed algorithm. First column contains names of 
ISCAS’89 test circuits, second number defines amounts of 
inputs, outputs and triggers. Both input and output 
numbers include number of triggers. Third column 
describes whether a full or partial reset sequence was 
found. If a full reset was found, a result string “fixed state” 
is used. This means, that it is possible to switch circuit 
from any random power-up state into a single fixed state 
using a set of resetting signals. If a full resetting signal is 
not found, number of fixed flip-flops / memory elements is 
displayed. This means, that experiment, using the 
algorithm provided could not find a full resetting sequence, 
but managed to set a part of triggers into fixed state. 
Results vary from 32% (s38417) to 99.7% (s38584) of 
triggers set to fixed state after a found partial reset 
sequence is used. Circuit s38584 has 1426 triggers, and 
only 3 were left unset. Fourth column provides a number 
of fixed triggers using PROTO (proposed software 
prototype emulating system-on-chip algorithm) software. 

Begin; 
generate_medium_sized_set_of_inputs
(); 
generate_small_sized_set_of_trigger_s
tates(); 
foreach(input_signal){ 
  foreach(trigger_state){ 
    calculate_circuit_output(); 
} 
  is_found_reset() 
{grab_reset_seq_candidate();} 
     else { take_best_reseting_input(); 
increase_reset_sequence_lenght(); } 
} 
generate_vlarge_sized_set_of_trigger_
states(); 
foreach(trigger_state){ 
    calculate_circuit_output(using single 
input – reset candidate); 
} 
if is_found_reset() 
validation_successfull(); 
 
End; 
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Fifth column displays the length of found reset sequence 
(full or partial). The search depth was limited to maximum 
set of 50 input signals. Some circuits may have a full reset 
sequence which is longer than 50 and show up only as 
partial resetting ones in this experiment. Other 5 columns 
are identical to fifth and sixth columns and provide results 
for algorithms used by other researchers (ACO-Init, GA-
Init, Partial). A number next to each name refers to an 
article describing each of algorithms, a list of articles is 
provided in literature. The “-“ signs used in results table 
mean that these circuits were not tested by the other 
articles authors. 

Largest of circuits are very hungry for CPU-time to 
test and has plenty of triggers. Therefore, using increased 

input/states set sizes; depth of search may take longer, but 
provide better results. 

If a full reset is required, but only partial resetting 
sequence is available, it is possible to reset some of the 
triggers using this set, and reset the non-fixed ones using 
DFT or direct input. 

While experimenting, results were analyzed trying to 
discover how small a set of starting states can be to 
produce valid results. If a states set is too small, false reset 
candidates appear in most circuits, which do not validate in 
the validation step. If the set is increased too much, an 
excess of calculations is required, resulting in a larger time 
frame.  

The table and graph below summarize the results. It is 
based on 22 tested ISCAS’89 circuits. 

 

Table 1. Experimental results: reset sequence lengths and numbers of reset flip-flops using software prototypes 

Circuit No 
No of 

Inputs/Outputs 
/Triggers 

Compared algorithms 

  PROTO ACO-Init[6] GA-Init[7] Partial[8] 

 In/Out/Triggers 
Full reset or max. 

no of memory 
elements set 

INITs LEN INITs LEN INITs LEN LEN 

s1196 32/32/18 fixed state 18 1 18 1 18 1  
s1238 32/32/18 fixed state 18 1 - - - -  

s13207 700/790/638 454 (71%) 454 18 314 30 207 20  
s1423 91/79/74 fixed state 74 2 74 3 74 3  
s1488 14/25/6 fixed state 6 1 6 1 6 1  
s1494 14/25/6 fixed state 6 1 - - - -  

s15850 611/684/534 458 (86%) 458 18 306 16 308 18  
s208 19/10/8 fixed state 8 1 - - - - 1 
s27 7/4/3 fixed state 3 1 - - - - 1 

s298 17/20/14 fixed state 14 2 14 2 14 2 2 
s344 24/26/15 fixed state 15 1 - - - - 2 

s35932 1763/2048/1728 fixed state 1728 1 1728 2 1728 1 1 
s382 24/27/21 fixed state 21 1 21 1 21 1  

s38417 1664/1742/1636 578  (35%) 570 14 579 13 372 9  
s38584 1464/1730/1426 1423 (99,78%) 1423 37 1398 59 1398 36  

s386 13/13/6 fixed state 6 2 - - - -  
s400 24/27/21 fixed state 21 1 21 1 21 1 1 
s420 35/18/16 fixed state 16 1 - - - -  
s444 24/27/21 fixed state 21 1 21 2 21 1  
s510 25/13/6 0 (0%) 0 - 0 0 0 0  
s526 24/27/21 fixed state 21 2 21 1 21 2 2 

s5378 214/228/179 167 (93%) 167 9 179 16 179 16 14 
s641 54/43/19 fixed state 19 1 19 1 19 1  
s713 54/42/19 fixed state 19 1 19 1 19 1  
s820 23/24/5 fixed state 5 1 -     
s832 23/24/5 fixed state 5 1 5 1 5 1  
s838 67/34/32 fixed state 32 1 -     

s9234 247/250/211 154 (73%) 154 4 152 10 53 2  
s953 45/52/29 25 (86%) 25 8 13 2 10 1 25 
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Fig. 3. Percentage of false reset candidates based on number of 
starting states 

Results (Fig. 3) show (50 runs for each circuit), that a 
set of 20 starting states is enough for proposed reset 
sequence search algorithm. 20 out of 22 tested circuits 
(91%) returned 0 false reset candidates when using  
starting set of 20 states or more. 72% of circuits returned 0 
false reset candidates when using starting set of 10 states 
or more. 

 
Table 2. The decrease of found false positives based on 
increasing number of starting states 

 
There were two circuits affecting results at the time 

of research: s208 (started returning 0 false reset candidates 
once the size of starting states set reached 100) and s344 
(kept returning false candidates no matter the starting 
states set size) . Largest of ISCAS’89 circuits were not 
included in this attempt due to calculation scope and time 
required (50 runs were used for each circuit). 

These results do not guarantee, that such method of 
state amount reduction works with any and all circuits, but 
it worked pretty well with the ones used for testing. 
Therefore, this approach might be considered if finding a 
reset sequence is required. 
 
Conclusions 
 

I presented an algorithm for finding shortest length 
reset sequences using circuit emulating software 
prototypes. Experimental results show, that this algorithm 
performs better or as-good-as compared to other methods 
on ISCAS’89 test circuits. This algorithm operates under 
conditions of increased difficulty, as the internal structure 
is not known and can not be examined and used to reduce 
the problem scope. 

Increasing sizes of data sets might have provided 
better experimental results, but it increases time required 
for each run, which might be limited.  

A reset sequence may not always be found. In such 
cases, a different approach should be used, or a partial 
reset solution accepted.  

In some cases, a reset candidate, which was found 
using an algorithm suggested, may not validate. It means, 
that the solution found is checked against a large number 
of starting states, and in some cases, the candidate may not 
be a resetting one. This often happens if a reset candidate 
sets most of the triggers to a fixed state, but a few triggers 
remain unstable when testing with an increased set. For a 
small set, these triggers may appear to be fully set. 

This does not necessarily mean that the non-
validating reset candidate is bad and should not be used. In 
my experiment, such non-validating candidates are good 
reset sequences once the number of fixed triggers is 
slightly reduced. I.e. an algorithm finds a reset candidate 
using 20 starting states for circuit s13207 with a number of 
fixed triggers 460 out of 638 total. Validation process fails, 
stating, that this candidate was unable to switch all 460 
triggers into a fixed state. Instead, only 454 triggers were 
fixed during the validation (which would pass).  

Therefore, 454 set triggers is still quite a good 
solution. In this case there was a 1,5% drop from the entire 
“before-validation” solution, and such reduction may still 
be acceptable.  

As for the rest of triggers, partial reset methods might 
be used to achieve even better resetability.References 
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