
71

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 7(103)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Circuit Reset Sequences based on Software Prototypes

K. Morkūnas, R. Šeinauskas
Department of Software Engineering, Kaunas University of Technology,
Studentų 50-404, LT-51368 Kaunas, Lithuania, phone: +370 670 75907, e-mail: kestutis.morkunas@ktu.lt

Introduction

Present-day circuits manufacturing is expected to

deliver top-class product quality in the shortest time frame
possible. Product might be finished faster by reducing time
needed for various stages of crafting process, like design,
implementation, test generation, etc. This can be done by
using automated design tools, various chip size
optimization techniques and more accurate, reliable and
speedy tests.

Concurrent design and test generation may come in
hand. Normally, a circuit is tested after it is synthesized
and burned on a chip. This step is important, and can not
be avoided. The manufacturing process is displayed in
Fig.-1. Best case scenario is when test cases are ready at
the time of chips’ completion and the test generation
process does not require any more time. Various software
prototypes emulating the designed chip can be made before
and during the specification generation phase. It helps to
find design flaws and detect errors early in the process.[10]

Chip fabrication process is as follows:

Fig. 1. Stages of chip manufacturing

Test generation can be moved next to specification
generation and design capture phases. Test cases are
generated replacing not-yet-existing chip with it’s software
prototype.[9]

To test a chip or it’s software prototype, a set of valid
input signals must be known. System boots up into
unknown state. To start testing, system must be in a fixed
state. Only then signal inputs can be sent and results
evaluated. If expected and actual results match – the test
passes. If not, there is a fault in fabricated chip. To switch
system into a fixed state, a reset sequence must be found.

There are two main ways to reset a system into a
fixed state: send a reset signal or signals; use a DFT
(Design for testability) methods. DFT use additional input

line/lines to send required logical value straight into
memory elements. Therefore, all required memory
elements can be set to a known and needed state. Reset
sequence sends a system from any/random booted state
into fixed state. Both methods have their advantages and
disadvantages. DFT offers fast and convenient solution,
but it has it’s disadvantages – extra inputs and additional
hardware are required for memory elements. By allowing
to set the system into required state, DFT allows better
chip coverage while searching for faults. Reset sequence
does not require extra input lines, but the fixed state it
transfers system to might not be enough. Some critical chip
sections and paths might get left out and/or unreachable
from this fixed state, and untested.

Test case generation for testing a software prototype
and test pattern generation for a manufactured system-on-
chip differs.

3-value logic (0, 1, x – unknown) used by test
generation on gate level for hardware testing is a problem
when testing software prototypes. Using this logic in
software prototypes explodes the number of if statements
required to emulate the chip’s logic. This limitation
increases the difficulty of the problem.

Test generation using internal chip’s structure is not
available at the design phase of the chip, as only software
prototypes may exist. The chip itself is not manufactured
yet, and the exact number of memory elements is not
known yet. It will be the fabrication algorithm which
decides on how to assemble available logical elements, so
that they do the required calculations. [11]

If the chip’s internal architecture is available, it is
popular to analyze it and determine various factors
influencing its results, like logic element placement
priorities and such. By removing non essential logical
elements or merging them into separate entities it is
possible to reduce the chip size and the total state space.
This reduction results in a smaller scope.

A reset sequence is needed to generate test cases for
the chip emulating software prototype A set of input
signals turn system’s memory elements into known state,
which is unknown at the time of chip’s power-up.
Therefore, without a known starting state a chip emulating
software prototype may not be tested. It is possible that

72

system-on-chip fires-up into a known state, which
eliminates the need of a reset sequence.

To test a software program, test cases are used. It’s a
set of variables and conditions which help determine if
work of the system is correct or not. An oracle is a
mechanism used to determine if a system passed or failed a
test.

Preceding work

A large portion of the research work is devoted to
synchronizing circuits using chip’s known internal
structure and the connections between logical elements. In
this case, irrelevant elements and element groups may be
removed, identical states identifies (and removed, thus
reducing the overall chip size), relations between memory
elements investigated and so on.

Chip’s structure is unavailable when using software
prototypes which emulate a system-on-chip. Therefore
some of the preceding works create solutions that are not
applicable whilst using prototypes.[11]

According to [1], a reset sequence can be difficult or
impossible to find due to logical and conditional loops
present in manufactured chip’s structure. Structural self-
loop forms when an input of a flip-flop or a trigger is
determined by its output alone. In this case, trigger is
removed from the main structure using a reset line. The
logical self-loops are the structural loops that appear after
part of triggers are already synchronized.[1] The authors
suggest using partial reset (DFT technique), if a full reset is
not found or not existing. Part of all triggers is selected for
a forced reset. They are selected after the circuit is
analyzed and logical or conditional loops found. According
to [1] this technique allows to synchronize largest
ISCAS’89 circuits.

A synchronization tree method may be used to
generate all the resetting sequences of the shortest length
[2]. This method checks if the circuit is synchronizable
first. All input combinations are required to form such a
tree, therefore this method is not practical for large chips.

Wehbeg and Saab use logical and functional
synchronization in their work [3]. Partitioning of the chip
is used, considering relationships between the memory
elements. Logical method is tried first. If it fails –
functional is used.

Reset sequences have their disadvantages; i.e. a set of
states that can be reached using reset sequences may be
limited [4]; critical states that must be tested may become
unreachable. A reset sequence may not exist because of
existing chip fault. In these cases, a DFT technique is
needed to control the chip state and detect faults whose
detection requires specific states.

M. Kein offers a method to quickly check if a given
circuit is resetable or not [5]

An approach to finding reset sequences using ant
colony optimizations is also presented [6]. It appears, that
nature solved the problem of finding the shortest path from
point A to point pretty well. This article explains how ants
find shortest route to food supplies scattered around in vast
territories. It appears that they use specific scent –
pheromone, which is left along the trail by the ant scouts.

Other ants follow this scent, which marks the shortest/best
path found. The scent decays with time, and must be
renewed. If a new better path is found, the path is altered.
It is called pheromone updating. In this article, such
approach is used to find shortest reset sequences in
systems-on-chips. System-on-chip’s internal architecture is
used. Results are provided for two different algorithms [6]
and [7].

Another algorithm is presented in [8] for partial reset
of large circuits, as well as results for ISCAS’89 circuits.
Chip’s internal architecture is used.

A chip may not have a reset sequence. Various
methods end up offering partial reset as a faster and
simpler way to achieve results. A partial reset is a set of
signals with some extra input lines to reset “hard to reset”
or “impossible to reset” triggers [8].

Calculation scope and data sets reduction

The amount of calculation required for building a
binary tree or full scan of large circuits grows
exponentially as the number of triggers increase. 5 inputs
and 3 triggers would result in a state space size of 8 and 32
inputs. 256 computation cycles are required to test state to
state transitions for all possible input/state combinations.
14 inputs and 6 triggers result in 1’048’576 computation
cycles. s35932 circuit from ISCAS’89 would require
5,1985515586282147693995918471419e+530
computation cycles for a full test.

In this article we present a basic algorithm based on
software prototype emulating operation of a circuit. It is
based on random generation of input signals and trigger
states. After a reset candidate is found, it is validated using
greatly increased state space. Generated sets are only a part
of the whole set of possible inputs and states. Therefore, all
results are based on heuristics or assumption. The primary
reduction in generated sets removes the need for huge
amounts of calculations mentioned above. If reset
candidate passes validation, one can assume that a reset
sequence is found. This may or may not be true, as only
part of whole state space has been tried.

Circuit gate level model use 3-value logics (0,1, x-
unknown), where software prototype can only use 0 and 1.
This increases the number of checks required.

Tests have been made using ISCAS’89 circuits and
experimental results are presented. Some circuits may be
reset using 1 input signal or word, while others require
more. Some circuits may not be fully reset using a reset
signal. In this case, a partial reset may be an option [1].

Various ISCAS’89 circuit emulating prototypes were
used for experiments. The main goal was to find a full
reset sequence, which turns all prototypes’ memory
elements into fixed state, no matter what the starting values
of these memory elements were before reset sequence was
applied. Such a sequence was not found for all available
prototypes. Some of them were only partially reset. For
some circuits (namely s510) it was not possible to switch
even a single memory element into a fixed state.

Time is needed for reset sequence algorithm to
produce results. The bigger the circuit, more time is
needed. An exception might be circuit no s35932, which

73

resets gracefully. This might be due to one of input pins
being a reset line for the entire circuit.

Due to large amount of time required for larger
circuits, an idea of set reduction was introduced. The idea
is that if a reset signal is able to bring a system into a fixed
state from a set of tens of starting states, it might do that
with thousands of starting states. I.e. if there are 10 starting
states and 1 reset input candidate which switch the system
from all 10 starting states into a single fixed state, it might
do the same for 100, 1000, 10’000 (and so on) starting
states.

It is possible to greatly reduce the calculation scope
by applying each input signal from a set of input signals to
reduced set of states and analyzing results.

Once a reset candidate is found, it is re-validated
against a large number of starting states. This allows
reducing the amount of work required, as the number of
calculations for state-input-state transitions is reduced.

Proposed algorithm

Full circuit test is a difficult task, as explained in
previous section. Therefore, a reduced size approach was
used in reset sequence finding algorithm. The main idea
behind it is: if the algorithm finds a reset sequence for
small set of trigger states, and validates the same reset
signal against much larger set of trigger states, then we
may say this is a resetting sequence for the circuit used.
Once again – this method is based on assumptions. Not all
possible input signals and triggers states were tested, so,
there is always a possibility, that results may or may not be
correct with sets that were not used in calculations.

Algorithm steps are as follows:
1. Algorithm generates a medium sized set of input

patters to send into the software prototype emulating the
circuit. More input patterns increase the chance to find
best-possible reset candidate, but also increases number of
calculations required and time required to produce results.
In experiments, a set of 300 input patterns were used.

2. Small set of trigger states are generated. Bigger
sets produce more reliable results and increase probability
that validation will pass successfully. This also increases
calculation time. Smaller sets result in faster completion,
but provides more false-positive reset candidates. In
experiments, a set of 20 states were used.

3. Each input signal is matched against each one of
trigger states and the new state is calculated. This is the
state into which system transfers to from a previous state
after an input pattern is applied.

4. For each input pattern, resulting states are
analyzed and number of fixed triggers calculated. If this
number equals total number of triggers, then a reset
candidate is found. If not, next input pattern is used for
calculations.

5. If a better (initializes more triggers than other
input patterns tried before) reset-candidate is found, it is
saved as a best one.

6. A very large (compared to starting set) set of
states are generated. In experiments, 50’000 states were
used.

7. Best reset-candidate is used with this large set of
trigger sets to calculate new system states. (Steps 3 and 4).

8. If this input pattern validates – an initializing
pattern has been found.

Fig. 2. Proposed algorithm

Experimental results

This algorithm was tested using ISCAS’89 circuits.
Results show, that this algorithm (named PROTO)

performs better or at least as-good-as 3 other algorithms
provided by other researchers. This article’s algorithm
operates under increased difficulty, because internal
structure of the chip is not known. Therefore, many
techniques employed by other researchers are unavailable.

Partial reset algorithm only provides partial results
(for those circuits that did not require partial reset and full
reset sequence was found).

Result table 1 displays experimental results using
proposed algorithm. First column contains names of
ISCAS’89 test circuits, second number defines amounts of
inputs, outputs and triggers. Both input and output
numbers include number of triggers. Third column
describes whether a full or partial reset sequence was
found. If a full reset was found, a result string “fixed state”
is used. This means, that it is possible to switch circuit
from any random power-up state into a single fixed state
using a set of resetting signals. If a full resetting signal is
not found, number of fixed flip-flops / memory elements is
displayed. This means, that experiment, using the
algorithm provided could not find a full resetting sequence,
but managed to set a part of triggers into fixed state.
Results vary from 32% (s38417) to 99.7% (s38584) of
triggers set to fixed state after a found partial reset
sequence is used. Circuit s38584 has 1426 triggers, and
only 3 were left unset. Fourth column provides a number
of fixed triggers using PROTO (proposed software
prototype emulating system-on-chip algorithm) software.

Begin;
generate_medium_sized_set_of_inputs
();
generate_small_sized_set_of_trigger_s
tates();
foreach(input_signal){
 foreach(trigger_state){
 calculate_circuit_output();
}
 is_found_reset()
{grab_reset_seq_candidate();}
 else { take_best_reseting_input();
increase_reset_sequence_lenght(); }
}
generate_vlarge_sized_set_of_trigger_
states();
foreach(trigger_state){
 calculate_circuit_output(using single
input – reset candidate);
}
if is_found_reset()
validation_successfull();

End;

74

Fifth column displays the length of found reset sequence
(full or partial). The search depth was limited to maximum
set of 50 input signals. Some circuits may have a full reset
sequence which is longer than 50 and show up only as
partial resetting ones in this experiment. Other 5 columns
are identical to fifth and sixth columns and provide results
for algorithms used by other researchers (ACO-Init, GA-
Init, Partial). A number next to each name refers to an
article describing each of algorithms, a list of articles is
provided in literature. The “-“ signs used in results table
mean that these circuits were not tested by the other
articles authors.

Largest of circuits are very hungry for CPU-time to
test and has plenty of triggers. Therefore, using increased

input/states set sizes; depth of search may take longer, but
provide better results.

If a full reset is required, but only partial resetting
sequence is available, it is possible to reset some of the
triggers using this set, and reset the non-fixed ones using
DFT or direct input.

While experimenting, results were analyzed trying to
discover how small a set of starting states can be to
produce valid results. If a states set is too small, false reset
candidates appear in most circuits, which do not validate in
the validation step. If the set is increased too much, an
excess of calculations is required, resulting in a larger time
frame.

The table and graph below summarize the results. It is
based on 22 tested ISCAS’89 circuits.

Table 1. Experimental results: reset sequence lengths and numbers of reset flip-flops using software prototypes

Circuit No
No of

Inputs/Outputs
/Triggers

Compared algorithms

 PROTO ACO-Init[6] GA-Init[7] Partial[8]

 In/Out/Triggers
Full reset or max.

no of memory
elements set

INITs LEN INITs LEN INITs LEN LEN

s1196 32/32/18 fixed state 18 1 18 1 18 1
s1238 32/32/18 fixed state 18 1 - - - -

s13207 700/790/638 454 (71%) 454 18 314 30 207 20
s1423 91/79/74 fixed state 74 2 74 3 74 3
s1488 14/25/6 fixed state 6 1 6 1 6 1
s1494 14/25/6 fixed state 6 1 - - - -

s15850 611/684/534 458 (86%) 458 18 306 16 308 18
s208 19/10/8 fixed state 8 1 - - - - 1
s27 7/4/3 fixed state 3 1 - - - - 1

s298 17/20/14 fixed state 14 2 14 2 14 2 2
s344 24/26/15 fixed state 15 1 - - - - 2

s35932 1763/2048/1728 fixed state 1728 1 1728 2 1728 1 1
s382 24/27/21 fixed state 21 1 21 1 21 1

s38417 1664/1742/1636 578 (35%) 570 14 579 13 372 9
s38584 1464/1730/1426 1423 (99,78%) 1423 37 1398 59 1398 36

s386 13/13/6 fixed state 6 2 - - - -
s400 24/27/21 fixed state 21 1 21 1 21 1 1
s420 35/18/16 fixed state 16 1 - - - -
s444 24/27/21 fixed state 21 1 21 2 21 1
s510 25/13/6 0 (0%) 0 - 0 0 0 0
s526 24/27/21 fixed state 21 2 21 1 21 2 2

s5378 214/228/179 167 (93%) 167 9 179 16 179 16 14
s641 54/43/19 fixed state 19 1 19 1 19 1
s713 54/42/19 fixed state 19 1 19 1 19 1
s820 23/24/5 fixed state 5 1 -
s832 23/24/5 fixed state 5 1 5 1 5 1
s838 67/34/32 fixed state 32 1 -

s9234 247/250/211 154 (73%) 154 4 152 10 53 2
s953 45/52/29 25 (86%) 25 8 13 2 10 1 25

75

Fig. 3. Percentage of false reset candidates based on number of
starting states

Results (Fig. 3) show (50 runs for each circuit), that a
set of 20 starting states is enough for proposed reset
sequence search algorithm. 20 out of 22 tested circuits
(91%) returned 0 false reset candidates when using
starting set of 20 states or more. 72% of circuits returned 0
false reset candidates when using starting set of 10 states
or more.

Table 2. The decrease of found false positives based on
increasing number of starting states

There were two circuits affecting results at the time

of research: s208 (started returning 0 false reset candidates
once the size of starting states set reached 100) and s344
(kept returning false candidates no matter the starting
states set size) . Largest of ISCAS’89 circuits were not
included in this attempt due to calculation scope and time
required (50 runs were used for each circuit).

These results do not guarantee, that such method of
state amount reduction works with any and all circuits, but
it worked pretty well with the ones used for testing.
Therefore, this approach might be considered if finding a
reset sequence is required.

Conclusions

I presented an algorithm for finding shortest length
reset sequences using circuit emulating software
prototypes. Experimental results show, that this algorithm
performs better or as-good-as compared to other methods
on ISCAS’89 test circuits. This algorithm operates under
conditions of increased difficulty, as the internal structure
is not known and can not be examined and used to reduce
the problem scope.

Increasing sizes of data sets might have provided
better experimental results, but it increases time required
for each run, which might be limited.

A reset sequence may not always be found. In such
cases, a different approach should be used, or a partial
reset solution accepted.

In some cases, a reset candidate, which was found
using an algorithm suggested, may not validate. It means,
that the solution found is checked against a large number
of starting states, and in some cases, the candidate may not
be a resetting one. This often happens if a reset candidate
sets most of the triggers to a fixed state, but a few triggers
remain unstable when testing with an increased set. For a
small set, these triggers may appear to be fully set.

This does not necessarily mean that the non-
validating reset candidate is bad and should not be used. In
my experiment, such non-validating candidates are good
reset sequences once the number of fixed triggers is
slightly reduced. I.e. an algorithm finds a reset candidate
using 20 starting states for circuit s13207 with a number of
fixed triggers 460 out of 638 total. Validation process fails,
stating, that this candidate was unable to switch all 460
triggers into a fixed state. Instead, only 454 triggers were
fixed during the validation (which would pass).

Therefore, 454 set triggers is still quite a good
solution. In this case there was a 1,5% drop from the entire
“before-validation” solution, and such reduction may still
be acceptable.

As for the rest of triggers, partial reset methods might
be used to achieve even better resetability.References

References

1. Pomeranz I., Reddy S. M. On the Detection of Reset Faults

in Synchronous Sequential Circuits // VLSI Design. – 1997. –
P. 470–474.

2. Cheng K., Agrawal V. Initializability consideration in
sequential machine synthesis // IEEE Trans. Comput. – 1992.
– Vol. 41. – P. 374–379.

3. Wehbeh J. A., Saab D. G. On the Initializationof Sequential
Circuits // Intl. Test Conf. – 1994. – P. 233–239.

4. Pomeranz I., Reddy S. M. On Removing Redundancies
from Synchronous Sequential Circuits with Synchronizing
Sequences // IEEE Trans. – 1996. – P. 20–32.

5. Keim M., Becker B. On the (Non–)Resetability of
Synchronous Sequential Circuits // IEEE VLSI test
symposium. – 1996. – P. 240–245.

6. Xiaojing H., Zhengxiang S. Ant Colony Optimizations for
Initalization of synchronous ssequential circuits // IEEE
Circuits and Systems International Conf. – 2009. P. 5–18.

7. Corno F., Prinetto P. Initializability analysis of synchronous
sequential circuits // ACM Trans. on Design Automation of
Electronic Systems. – 2002. – Vol. 7, no 2. – P. 249–264.

8. Lu Y., Pomeranz I. Synchronization of Large Sequential
Circuits by Partial Reset // IEEE VLSI Test Symp. – 1996. –
P. 93–98.

9. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R.
Functional Delay Clock Fault Models // Information
Technology And Control. – Kaunas, Technologija, 2008. –
No. 1(37). – P. 12–18

10. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R. The
Use of a Software Prototype for Verification Test Generation
// Information Technology And Control. – Kaunas,
Technologija, 2008. – No. 4 (37). – P. 265–274.

11. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R. On the
Enrichment of Functional Delay Fault Tests // Information
Technology And Control. – Kaunas, Technologija, 2009. –
No. 3(38). – P. 208 – 216.

Received 2010 03 29

Starting number of states False positives
1 62,10 %
4 8,65 %
10 2,30 %
20 1,60 %

76

K. Morkūnas, R. Šeinauskas. Circuit Reset Sequences based on Software Prototypes // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2010. – No. 7(103). – P. 71–76.

In this article, sequential circuit reset and initialization problem is presented. A method and algorithm is proposed for finding
shortest length reset sequences using circuit emulating software prototypes. Using a software prototype gives the benefit and possibility
of early test case generation. A reset sequence is able to switch circuit to a know state, regardless of the initial state. In this work, finding
a reset sequence consists of using a software prototype which emulates an actual circuit. The proposed method and algorithm use
randomly generated sets of circuit states and input signals, finding the best reset candidate and the validation of solution. ISCAS'89
benchmark sequential circuits were used for experiments. The results are provided within the article. It shows, that this method can
achieve better, or at least “as good as” results compared to other algorithms, even though this method operates under more difficult
conditions. Ill. 3, bibl. 11, tabl. 2 (in English; abstracts in English, Russian and Lithuanian).

К. Моркунас, Р. Шейнаускас. Вычисление установочной последовательности на основе программного прототипа //
Электроника и электротехника. – Каунас: Технология, 2010. – № 7(103). – C. 71–76.

Проблема тестирования является критической проблемой всего процесса проектирования цифровых устройств, которая
увеличивает время попадания устройств на рынок. С целью уменьшения сложности задачи генерирования тестов надо начать
их проектирование на функциональном уровне. Возникает задача вычисления установочной последовательности на основе
программного прототипа. Предложенный метод и алгоритм использует вероятностное генерирование входных сигналов,
выбор лучших кандидатов и проверку решения. Результаты экспериментального исследования прилагаются. Ил. 3, библ. 11,
табл. 2 (на английском языке; рефераты на английском, русском и литовском яз.).

K. Morkūnas, R. Šeinauskas. Schemų nustatymo sekų aptikimas naudojant programinės įrangos prototipus // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 7(103). – P. 71–76.

Straipsnyje apžvelgta mikroschemų nustatymo ir inicializacijos problema. Siūlomas metodas ir algoritmas trumpiausiai nustatymo
sekai rasti naudojant schemas imituojančius programinės įrangos prototipus. Naudojant šiuos prototipus galima anksčiau pradėti ruoštis
testavimui schemų gamybos procese. Nustatančioji seka pakeičia schemos vidinių atminties elementų būseną į žinomą būseną
nepriklausomai nuo prieš tai buvusios. Šiame darbe paieškos algoritmas naudoja schemos veikimą imituojantį programinės įrangos
prototipą. Siūlomas metodas ir algoritmas naudoja atsitiktinai sugeneruotas pradinių būsenų ir įėjimo signalų aibes, randa geriausią ir
patikrina sprendimą. ISCAS’89 schemos buvo naudojamos eksperimentams. Rezultatai pateikiami straipsnio pabaigoje. Šiuo metodu
galima gauti geresnius, palyginti su kitais algoritmais, arba tokio pat lygio rezultatus, nors šis algoritmas veikia sunkesnėmis sąlygomis.
Il. 3, bibl. 11, lent. 2 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

	SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
	T 120
	Introduction
	Preceding work
	Proposed algorithm
	Conclusions

