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Introduction 

 
The expansion of Integrated Electronic Systems (IES) 

[1] and Information Communication Technology (ICT) 
resulted in a global virtualization, i.e., now we are moving 
from a single work station to virtual machine and towards 
cloud computing [2], where humans are working using 
mobile devices [3].  

Due to the battery energy issues [4-7], it is reasonable 
to transfer energy-aggressive computations to virtual 
environments. However, they are operating under 
conditions that are constantly affected by threats and 
danger of virus attacks. In such a case, we must take care 
to the information security [8] and protection against the 
attacks.  

In general, computer viruses are products of special 
software called malware. Malware, as described in [9], is 
classified into four classes: type 0, type I, type II and type 
III. According to statistics gathered from Microsoft’s 
Malicious Software Removal Tool, a significant fraction of 
the malware it encounters consists of stealth rootkits [10]. 
With respect to the mentioned classification, rootkits are 
malware of type I and type II [9]. 

A rootkit is a small computer program that stealthily 
invades an operating system (OS) or its kernel and takes 
control of the computer [10]. Rootkits are receiving more 
attention now as they are becoming serious security threats 
to all classes of computing, including embedded devices, 
desktop users, and server farm machines. As rootkits hide 
malware activities, i.e. may run as hidden processes, gain 
accesses as administrator to system resources and exploit 
kernel vulnerabilities, it is difficult to detect them.  

Basically, rootkits can be categorized into two 
groups: user-level (aka application-level) rootkits and 
kernel-level rootkits [11, 12]. If user-level rootkits are 
quite easy to uncover, because they do not modify the OS 
kernel, the second group poses a lot of problems because 
the rootkits modify the OS kernel to provide the faked 
information. 

The aim of the paper is to present some framework to 
investigate the behavior of the kernel-level rootkits and 
describe the results of experiments we have carried out 
aiming to model the processes of detection of such kind of 
malware. The basic result we have identified is the rootkits 
detection time dependencies upon the virtual machine 
memory size. 

 
Problem motivation 
 

The typical structure of virtual environment consists 
of hardware with host operating system (OS), 
virtualization layer and series (pool) of virtual machines 
(VM)  with guest OS as it is presented in Fig. 1, a).   

 

 
 

a) 
 

 
 

b) 
Fig. 1. Typical virtual architecture with firewall and antivirus 
software (a) and extra tools to support security (b)  

 
The benefits of virtualization are numerous and 

include, for example, portability, manageability and 
efficiency in using of computational resources. But the 
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benefits are not for free: we must consider and evaluate 
security problems that arrive with virtualization. The 
typical solution of the problems is the use of the firewall 
and antivirus software installed in the host operating 
system (see Fig.1, a)). Though the solution is simple 
enough, however, it cannot ensure entirely the security of 
virtual machines from the rootkit attacks (for details, see 
[13]).  

To protect virtual machines from that kind of virus, it 
is possible to install the firewall and antivirus software in 
each VM. However, such a solution is rather too complex 
and lacks of flexibility in terms of efficiency and costs. 
First, there are extra memory losses in each virtual 
machine. And next, licenses are need for each virtual 
application, i.e. in each guest OS. As virtual machines are 
usually created dynamically the number of required 
licenses should be anticipated for the maximum meaning 
that not all of them will be in use. 

A question that is often asked is: “Can a virtual 
machine be used to compromise its host server?” Although 
no known compromises exist today which could be used to 
attack a host server from within a virtual machine, it is 
conceivable that it could be accomplished through the 
virtualization platform’s communication mechanisms 
between host server and virtual machines used by the 
platform’s guest OS enhancement tools [14, see page.98]. 

What we propose for the problem solution in this 
paper is the use of VM memory’s scanning tools from 
outside, e.g. from the host OS (see Fig. 1, b). The tools are 
storied into the host computer and are operating under host 
OS control. The tools perform scanning of VM memory 
aiming to identify the existence of the virus. 

 
Problem representation domain 
 

Depending on the level of exploitation, a rootkit can 
operate in the user space and the kernel space. Kernel 
mode rootkits are more detrimental than user mode rootkits 
as they can obtain unrestricted accesses at the root 
privilege level and thus can freely manipulate any 
component of the system via the compromised OS.  

 

 
 
Fig. 2. Problem representation using feature diagram notation 

 

When a virtual machine is running it is possible 
through the use of existing tools (e.g., memory dump to 
file) to gather information about memory’s (e.g., process 
list, interrupt description table, kernel mode, user mode, 
etc.) from both inside and outside of the virtual machine 
OS. Fig. 2 explains the features of the problem and 
solution domains. Note that black circles denote obligatory 
features that were taken into account in our investigation. 
White circles denote optional features that can be analyzed 
in other contexts.  

Rootkits detection may be made by the memory scan 
for known anomalies in the process list, in the kernel 
mode, in the orphan threads list, in the user mode and in 
the interrupt descriptor table (IDT). 

A virtual machine in the host computer is presented 
as a continuous file, where the guest OS structure and all 
information are saved. We provide a brief overview of 
tools used as follows. 

- Volatility framework – the Volatility Framework 
is a completely open collection of tools, 
implemented in Python under the GNU (General 
Public License), for the extraction of digital 
artifacts from volatile memory (RAM) samples 
(www.volatilesystems.com/default/volatility). 
The extraction techniques are performed 
completely independent of the system being 
investigated but offer unprecedented visibility 
into the runtime state of the system. 

- Volatility plug-ins – list of the published plug-ins 
for the Volatility framework. 

- Python – is an object-oriented, interpreted, and 
interactive programming language. 

- MinGW – a port of the GNU Compiler Collection 
(GCC), and GNU Binutils, for use in the 
development of native Microsoft Windows 
applications. In our case the tool was used for 
developing Volatility plug-in. 

- Flypaper.exe – HBGary Flypaper is loaded as a 
device driver and it blocks all attempts to exit a 
process, end a thread, or delete the memory. All 
components used by the malware remain as a 
resident in the process list and stay in the physical 
memory. The entire execution chain is reported so 
that you can follow each step. HBGary Flypaper 
is free for non-commercial use. 

- VMware Workstation v6.5 and v7 – desktop 
oriented virtualization platform. 

 
Strategy of the methodology for the given platform 

 
The proposed methodology contains three stages: 

initialization, snapshot and analysis. The first stage needs 
both the guest OS and host OS initial initialization. Each 
guest OS needs to be initialized with:  

- Rootkit for simulation process (we use FU - open 
source rootkit with well known code and behavior 
(www.securityfocus.com/columnists/358/1). 

- Network services (such as, tfpd, ftpd, syslogd) for 
communication with host OS. 

Host OS needs to be initialized with: Python runtime 
v2.6 serves to enable volatility framework run because it is 

https://www.volatilesystems.com/default/volatility�
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entirely written in that language; Volatility framework; 
Volatility framework plug-ins; Microsoft ® PowerShell. 

 
The second stage serves for taking guest OS 

memory’s information snapshots periodically and saving 
that information into the file VMEM (meaning ‘virtual 
memory’ for short) outside guest OS for the next stage. 
Actions of the snapshot stage are detailed in Fig.3. 

 

 
 
Fig. 3. Algorithm that models ROOTKIT detection functionality 
within the VM memory’s analyzing tools (see Fig.1. b)) 

 
It is important to state that we need to freeze the 

processes within the guest OS for taking the snapshot. At 
the end of snapshot we record the elapsed time and, than 
the guest OS processes are released.  

The snapshot what was saved into the file identified 
as VMEM is used at the last stage: analysis for rootkit 
detection. Fig. 4 presents main processes of the last stage. 
 

 
 
Fig. 4. Analyzing processes for communication and elapsed time 
recording  

 
We applied five scans for rootkit detection and every 

scan elapsed time was recorded. The task of mentioned 
measures was to evaluate and detect how match time takes 
every scan period and how scan times depends upon guest 
OS memory’s size.  

Scripts were written for each scan processes and scan 
times recording. For all collected snapshots volatility 
framework was run from Microsoft ® PowerShell.  

The number of command lines used for getting 
experiment results is shown in Table 1.  

 
Table 1. Scripts for snapshot scanning 

Analyze purpose Script 

Process list scan python volatility.py pslist -f  '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' 

User mode hooks scan python volatility.py usermode_hooks  -f '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' –d 
C:\temp 

Orphan threads scan python volatility.py orphan_threads  -f  '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' 

Kernel hooks scan python volatility.py kernel_hooks -f  '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM'  –d 
C:\temp 

IDT entries scan python volatility.py idt_entries  -f  '$FULL_PATH_TO_VM_MEMORY_IMAGE.VMEM' 
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 Experiments 
 

The aim of our experiment was to collect 
experimental data of real VM and to evaluate the proposed 
methodology by recording the scan time’s dependencies 
upon the VM memory size. 

In our experiments, the host machine is Intel P9400 
running host Windows 7 32-bit OS. The VM hypervisor is 
VMware Workstation v6.5. 

The pool of the guest OS was implemented using 
Windows XP SP3 32-bit with the different sizes of random 
access memory (RAM). The first VM RAM size was 
128MB, the second 256 MB, and the next 384MB and so 
on till the last 2048MB. 

In this section we present the results of using our 
verification function for kernel rootkits detection and give 
a brief evaluation of verification performance.  

The experiment results for each increment of the 
guest OS memory size, i.e. VM, are presented in Table 2. 

 
Table 2. Experiment result details 

VM memory 
size,  
MB 

Snapshot 
time,  

s 

Orphan 
threads 

scan,  
s 

Process list 
scan,  

s 

Kernel 
hooks scan,  

s 

User mode 
hooks scan,  

s 

IDT entries 
scan,  

s 

Total time, 
s 

128 1 3,88 0,14 2,65 127,10 0,77 135,55 
256 1 1,12 0,14 2,59 119,72 0,33 124,91 
384 1 4,63 0,14 2,57 116,88 0,36 125,59 
512 2 6,17 0,14 2,58 116,21 0,42 127,52 
640 2 6,70 0,16 2,56 100,38 0,49 112,28 
768 2 7,79 0,14 2,58 109,60 0,38 122,50 
896 2 8,79 0,14 2,53 108,99 0,50 122,96 
1024 19 22,34 0,14 2,56 101,38 0,54 145,97 
1152 22 25,93 0,14 2,60 97,35 0,79 148,80 
1280 26 27,86 0,14 2,59 108,73 0,56 165,88 
1408 26 28,58 0,14 2,53 113,36 0,52 171,14 
1536 33 30,72 0,14 2,60 116,85 0,53 183,83 
1664 27 33,05 0,14 2,58 121,85 0,56 185,19 
1792 33 39,82 0,14 2,55 108,97 0,48 184,96 
1920 44 43,66 0,15 2,59 113,93 0,55 204,87 
2048 55 46,58 0,14 2,58 117,96 0,40 222,67 

 
In Fig. 5, we present a graphical relationship between 

the VM memory size and the total time consumed for the 
snapshot and all types of the VM memory scans.  

 

Summary of VM memory's snapshot and scan 
time for rootkit detection
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Fig. 5. Total analyze time in VM with various memory sizes  
 
We have also identified that there is a difference in 

time when we are repeating the scanning process, for 
example, for the orphan threads scan and for the user mode 
hooks scan.  

As it is depicted in Fig. 6, the second orphan threads 
scan requires much less time then the first We explain the 
phenomena by the memory data cashing effect.  

 

Orphan threads scan
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Fig. 6. Two runs of the orphan threads scan  

 
As it is depicted in Fig. 7, the second user mode 

hooks scan requires also less time then the first.  
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User mode hooks scan
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Fig. 7. Two runs of the user mode hooks scan  

 
Comments on the modelling results given in Table 2 

are as follows. Process list, Kernel hooks and IDT entries 
scans are approximately constant because they are 
independent upon VM memory size (they depend on guest 
OS initial configuration only). Small discrepancies are due 
to the measurement inaccuracy. 

User mode hooks scan varies depending on the VM 
workload. In the rest scans times vary depending on the 
VM memory size, but there is a noticeable jump when the 
VM memory size reaches 1024 MB. The jump is due to the 
hypervisor’s specificity:  when the VM memory size is less 
than 1024 MB VM are still under operation, and when the 
size of VM is more or equal to 1024 MB VM are 
interrupted until the end of the scans. 

 
Conclusions 

 
Our experiment shows that the VM memory size is 

influential on the total elapsed time for rootkits detection in 
the following manner: 1) with the increase of memory size 
the snap shot time grows largely but there is no evident 
relationship (e.g., if the size of memory changes by factor 
2-3 the time increases by factor 15-20); 2) the memory size 
is most influential on scanning time of Orphan threads, 
again there is no clearly identifiable expression of the 
relationship; 3) Process list and Kernel hooks scan times 
are practically independent upon the memory size of 
virtual machines; 4) user mode hooks and IDT scan times 
not much depend on the memory size, though one can 
observe some discrepancies in time values. Our experiment 
results also show that the difference between the minimal 
amount of time and the maximal amount of time can be 
expressed by factor 2. 
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вирусы поражают функциональные свойства ядра операционной системы, широко распостранены в различных операционных 
системах, как в стационарных, так и в виртуальных. Основные результаты: 1) предложена методика обнаружения вирусов типа 
Rootkits в среде виртуальных машин, при измененяющемся объеме оперативной памяти; 2) установлена связь между временем 
обнаружения вируса и размером памяти виртуальных машин. Ил. 7, библ. 14, табл. 2 (на английском языке; рефераты на 
английском, русском и литовском яз.). 

 
 

J. Toldinas, D. Rudzika, V. Štuikys, G. Ziberkas. Rootkit virusų aptikimo eksperimentas virtualioje aplinkoje // Elektronika ir 
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 8(104). – P. 63–68. 

Virtualių mašinų aplinkoje labai didelę reikšmę turi saugumas. Šiame straipsnyje pateikiami kai kurie eksperimentiniai rezultatai, 
gauti konkrečioje virtualių mašinų aplinkoje modeliavimo būdu siekiant nustatyti virusų, žinomų Rootkits vardu, aptikimo trukmę 
priklausomai nuo virtualios mašinos atminties dydžio. Šie virusai klastingai pažeidžia operacinės sistemos branduolio funkcionalumą, 
yra labai paplitę bet kurioje sistemoje, virtualioje arba stacionarioje. Pagrindinis straipsnio rezultatas toks: 1) pasiūlyta virusų Rootkits 
aptikimo metodika virtualių mašinų aplinkoje, kai keičiasi virtualių mašinų operatyviosios atminties dydis; 2) nustatytos viruso aptikimo 
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