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Introduction 
 

A robot manipulator is a nonlinear system including 
high coupling between its dynamics and friction 
phenomena at its joints [1]. One constraint on controlling 
of robots is saturation nonlinearities of actuators which less 
considered in control systems for robot manipulators. 

A well improved control method is sliding mode 
control which is capable in the control of nonlinear 
systems, MIMO systems and even discrete-time systems 
[2, 3]. A good survey in this realm is provided by [4]. 
Prominent trait of SMC is its robustness against parameter 
uncertainties and disturbances. In spite of these merits, 
SMC suffers from chattering problem which can excite 
unmodeled dynamics and harm the control system. To 
avoid this problem, a traditional approach is the use of 
boundary layer around sliding surface, but this causes 
steady state tracking error. Additionally, performance of 
sliding mode control of robot manipulator is declined by 
applying limitation on control input magnitude. On the 
other hand, in absence of parameter uncertainties and 
external disturbance, fuzzy control is appropriate for many 
control designs [5-8]. At a good study which has been 
accomplished in [9], a fuzzy controller with bounded 
torques has been designed for set-point tracking of robot 
manipulator in where the friction phenomenon has been 
considered; Also stability of control system was proved by 
Lyapunov method and Lasalle’s theorem. Moreover, 
because of being similarities between fuzzy logic and SMC 
[8, 10], fuzzy logic is widely used to enhance SMC 
performance such as chattering elimination that generally 
has been called "fuzzy sliding mode control" [11-13]. 

In this note, a combined controller includes SMC 
term and fuzzy term is proposed for set-point tracking of 
robot manipulators. Some practical issues, such as 
existence of joint frictions, restriction on input torque 
magnitude due to saturation of actuators, and modeling 
uncertainties have been considered here. Design procedure 

contains two steps. First, SMC design is accomplished and 
system stability in this case is provided by Lyapunov direct 
method. When the tracking error would be less than 
predefined value then a sectorial fuzzy controller (SFC), 
[14], is responsible for control action. Designing of this 
kind of fuzzy controller is exactly same as in which has 
performed in [9]. This proposed controller has following 
advantages. 1) There are less tracking error versus 
traditional SMC in condition that the control input is 
limited, 2) the chattering is avoided, 3) convergence of 
tracking error is more rapid than fuzzy controller designed 
in [9] and modeling uncertainty is considered here. 

 
Mathematical Model for robot manipulator and 
problem formulation 
 

The dynamical equation of an n-link robot 
manipulator in the standard form is as follows [1] 

           ττ =+++ ),()(),()( qFqGqqqCqqM  , (1) 

where nnRqM ×∈)(  is a symmetry and bounded positive 
definite matrix which is called inertial matrix. Moreover, 

nRqqq ∈,,  are the position, velocity, and angular 
acceleration of robot joints, respectively. The matrix  

nnRqqC ×∈),(   is the matrix of Coriolis and centrifugal 

forces such that the matrix ),(2)( qqCqM  −  is asymmetry, 
i.e., for a nonzero 1×n  vector x we will have: 

0)],(2)([ =− xqqCqMxT  . Also, nRqG ∈)( is the gravity 

vector and nRqF ∈),( τ  stands for friction vector which is 
as follows [15] 

 [ ] );()sgn(1)sgn(),( siiiiciiiii fsatqqfqbqf ττ  −++= , (2) 

where ),( ii qf τ ,  ni ,,2,1 = ,  denotes the i-th element  of 
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),( τqF   vector. ib , cif  and  sif  are the viscous, Coulomb 
and static friction, respectively.  

In the following, )(qM , ),( qqC   and )(qG  might be 
shown by M, C, and G, respectively in where it would be 
requisite. 

Now, the boundedness properties are defined as 
below 

 { } nigqg ii
Rq n

,,1,)(sup =≤
∈

, (3) 

where ig  stands for the i-th element of )(qG  and ig  is 
finite nonnegative constant. Assume, the maximum torque 
that joint actuator can supply is maxτ . Therefore 

 niii ,,1,max =≤ ττ  (4) 

and each actuator satisfies the following condition 

 siii fg +>maxτ . (5) 

In robot modeling, one can well determine the terms 
M(q) and G(q) but it is difficult in most cases obtaining the 
parameters of ),( qqC   and ),( τqF   exactly. So, in present 
paper, the matrix C is considered as follows 

 CCC ∆+= ˆ , (6) 

where Ĉ  denotes estimation of C and ∆ C is bounded 
estimation error which has following relation 

 jiji CC ,, 1.0≤∆ , (7) 

where jiC ,  stands for elements of the matrix C. Also the 
vector F is supposed as an external disturbance with 
following unknown upper bound 

 upFF ≤ , (8) 

where the operator ⋅  denotes Euclidean norm. 
If one considers the desired point which joint position 

must be held on it as dq , then the position error could be 
defined as 

 qqq d −=~ . (9) 

The set-point tracking problem refers to define the 
control law such that error e would be driven toward the 
inside of an arbitrary small region around zero with 
maintaining the torques within the constraints (4). In 
succeeding sections this aim will be attained. 
 
Sliding mode control 
 

In order to design SMC controller, the following 
sliding surface is considered 

 ees λ+=  , (10) 

where dqqqe −=−= ~  is error vector and λ  is supposed 
symmetric positive definite matrix such that s=0 would 

become a stable surface. The reference velocity vector 
" rq " is defined as in [3] 

 eqq dr λ−=  . (11) 

Thus, one can interpret sliding surface as 

 rqqs  −= . (12) 

In order to reach the system states ),( ee  to the 
sliding surface 0=s in a limited time and remain there, 
the control law should be designed such that the following 
sliding condition is satisfied 

 [ ] 1,)(
2
1 2/1 ≠−< sssMss

dt
d TT η  (13) 

where η  is positive definite. Here, the SMC controller 
design is expressed by following lemma. 

Lemma 1. Consider the system with dynamic 
equation (1) and sliding surface and reference velocity 
defined by (10) and (11), respectively. If one chooses the 
control law below 

 )sgn(ˆ sK−= ττ , (14) 

such that 

 GqCqM rr ++=  ˆτ̂  (15) 

and 

 iri qCK Γ+∆≥  , (16) 

then the sliding condition (13) is satisfied. In the last 
inequality, Ki denotes the element of sliding gain vector K 
and Γ  is design parameter vector which must be selected 
such that iupi F η+≥Γ . 

Proof. Consider the following Lyapunov function 
candidate: 

 MssV T

2
1

=  (17) 

Since M is positive definite, for 0≠s we have 
0>V and by taking time derivative of the relation (17) and 

regarding the symmetric property of M, it can be written 

 sMssMsV TT 
2
1

+=  (18) 

From (12), gives 

 sMsqMqMsV T
r

T 
2
1)( +−= . (19) 

By substituting (1) in (19) and considering 
asymmetry property 0)2( =− sCMsT  , we have 

 )( rr
T qMFGqCsV  −−−−= τ . (20) 

Now, applying (14) and (15) yields 

 ∑
=

−+∆=
n

i
iir

T sKFqCsV
1

)(  . (21) 
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Finally, from relation (16) it can be concluded that 

 ∑
=

−≤
n

i
ii sV

1
η  (22) 

This indicates that V is a Lyapunov function and the 
sliding condition (13) has been satisfied. 

Note that, in general, the sign function is replaced by 
saturation function as ( )ϕ/sat s , where ϕ  denotes 
boundary layer thickness. 
 
Fuzzy controller design 
 

 In this section, the SFC class of fuzzy controller 
studied in [9] is considered which has two-input one-
output rules used in the formulation of the knowledge base. 
These IF-THEN rules have following form 

 2121 isthenisandisIf 2211
llll ByAxAx , (23) 

where [ ] 2
2121 ℜ⊂×=∈= UUUxxx T  and 

ℜ⊂∈Vy . For each input fuzzy set jl
jA  in jj Ux ⊂  and 

output fuzzy set 21llB  in Vy ⊂  exist an input membership 
function )( jA

xjl
j

µ  and output membership function 

)(21 yllBµ  shown in Fig. 1 and Fig. 2, respectively.  

 
Fig. 1. Input membership functions 

 
Fig. 2. Output membership functions 

The fuzzy system considered here has following 
specifications: Singleton fuzzifier, triangular membership 
functions for each inputs, singleton membership functions 
for the output, rule base defined by (23), (see Table. 1), 
product inference and center average defuzzifier. Thus, one 
can compute the output y in terms of inputs as follows [5] 
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Special properties of this input-output mapping )(xy  
for x1, x2 are given in [9]. 

Table 1.The fuzzy rule base for obtaining output y 

PB PS ZE NS NB 
        1x  

2x  

ZE ZE NS NB NB NB 
ZE ZE NS NB NB NS 
PS PS ZE NS NS ZE 
PB PB PS ZE ZE PS 
PB PB PS ZE ZE PB 

 
Lemma 2. For the system with dynamic equation (1), 

if one chooses the following control law 

 )()~,~( qGqq += φτ , (25) 

where q~  is defined as (9) and qqq d  −=~ is velocity error 
vector, then the closed-loop system shown in Fig. 3 
becomes stable. 

Proof. The stability analysis is based on the study 
performed in [14] and is fully discussed in [9], so it is 
omitted here. Note that for constant set-point 0=dq  

hence qq  −=~ . 

 
Fig. 3. Closed-loop system in the case of fuzzy controlle [9] 

Incorporating SMC and SFC 

Each of the two controllers explained in last two 
sections drives the robot joint angles to desired set-point in 
finite time and according to the Lemma 1 and 2 the closed-
loop system is stable in both cases. In this paper, for 
obtaining advantages of both sliding mode and sectorial 
fuzzy controllers and also minimizing the drawbacks of the 
both of them, the following control law is proposed: 
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where α  is strictly positive small parameter which can be 
determined adaptively or set to a constant value. So, while 
the magnitude of error is greater than or equal to α , SMC 
drives the system states, errors in our case, toward sliding 
surface and as soon as the magnitude of error becomes less 
than α , then the SFC which is designed independent of 
initial conditions, controls the system. Since the SMC has 
faster transient response, the response of the system 
controlled by (26) is faster than the case of SFC. 
Additionally, in spite of the torque boundedness, since the 
SFC controls the system in the steady state, the proposed 
controller (26) has less set-point tracking error. Also, since 
near the sliding surface the proposed controller switch 
from SMC to SFC, therefore the chattering is avoided here. 
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The case study and simulation results 

In order to show the effectiveness of the proposed 
control law, it is applied to a two-link direct drive robot 
arm with the following parameters [9]: 
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According to the actuators manufacturer, the direct 
drive motors are able to supply torques within the 
following bounds: 
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The desired set-point is 
                            [ ]Tdq ππ −= ,                      (29) 

which is applied as a step function at time zero. The SMC 
design parameters are as below 
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For SFC case, according to Fig. 1 and Fig. 2, 
},,,,{ 21012 jjjjjx pppppp

j
−−= is fuzzy partition of the 

input universe of discourse and 
},,,,{ 21012 yyyyyp y −−=  is for output universe of 

discourse. Now, SFC design parameters are given by 
following equations [9]: 
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For our proposed controller (26), the constant 
3.0=α  is supposed. Additionally, to show the 

improvement achieved from applying the proposed method 
of this paper (incorporating SMC and SFC), the simulation 
results of applying this method are compared with the 
related results of the SMC case and SFC case, separately. 
The error vector and control law in the case of 
conventional SMC have been shown in Fig. 4 and Fig. 5, 
respectively.  
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Fig. 4. Error vector in the case of SMC 
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Fig. 5. The control torques in the case of SMC 

The tracking error in this case is about 0.1(rad) and 
when one choose the thinner boundary layer to decrease 
this error, chattering will be occurred. The corresponding 
graphs for the case of applying SFC are also provided in 
Fig. 6, and Fig. 7. 
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Fig. 6. Error vector in the case of SFC 

In the case of control law proposed in the present 
paper, Fig. 8 and Fig. 9 illustrate the error vector and 
control law, respectively. The tracking error is about 0.002 
in this state of affairs.  

As it can be seen from these results, the proposed 
incorporating SMC and SFC controller has faster response 
and less tracking error in comparison with SMC and also 
the error vector converge toward zero faster than SFC. 
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Fig. 7. The control torques in the case of SFC 
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Fig. 8.  Error vector in the case of incorporating SMC and SFC 
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Fig. 9. The control torques in the case of incorporating SMC and 
SFC 

In order to show the robustness of the proposed 
method, the inertia and torque perturbations are considered 
as following. The elements of inertia matrix are supposed 
to increase fifty percent after 2 sec. It can be a weight that 
added to the mass of 2nd link. Also, disturbance torque is 
considered with the following equation. 

                   [ ]Td t ππτ 2sin32sin3= .                 (34) 

In this case, the vector of joint errors is shown in Fig. 
10. The errors are as good as previous case. Fig. 11 

illustrates the control torques which are not change 
significantly, and because of existing perturbations, they 
alter trivially after 2 sec. these two recent results verify the 
robustness of the presented approach. 
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Fig. 10. Error vector in the case of torque and inertia 
perturbations 
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Fig. 11. The control torques in the case of torque and inertia 
perturbations 
 
Conclusions 

 
In this note, a new combination of sliding mode control 

and fuzzy control is proposed which is called incorporating 
sliding mode and fuzzy controller. Three practical aspects 
of robot manipulator control are considered here, such as 
restriction on input torque magnitude due to saturation of 
actuators, friction and modeling uncertainty. In spite of 
these features, the designed controller can improve the 
sliding mode and fuzzy controller performance in the 
tracking error and faster transient points of view, 
respectively. Finally, the simulation results of applying the 
proposed methodology and other two cases to a two-link 
direct drive robot arm were provided. Comparing these 
results demonstrate the success of the proposed method. 
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