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Introduction

At the present day there are many types of filters for
numerous filtering and signal processing tasks. This article
reviews filters approximating the amplitude-frequency
response (AFR).

Filters with the highest gain slope can be synthesized
on the basis of elliptic approximation. The elliptic
functions can be used to create the highest selective filters
[1]. However, the high gain slope of elliptic filter is
achieved at the cost of the higher Q-factor of filter
sections, which requires complex calculations and accurate
tuning. The scheme of such filter is not only larger and
more complicated, but also more sensitive to the values of
its parts and environment conditions, such as a
temperature.

By reducing Q-factor of filter it is possible to
simplify its circuitry. It is obvious, though, that selectivity
of the filter with limited Q-factor shall be lower, compared
to selectivity of the elliptic filter of same order. However,
by using zeros in the transfer function, it is possible to
create a filter with higher selectivity, compared to the
selectivity of Chebyshev filter of the same order and higher
Q-factor.

Estimation of the Q-factor for pole pairs

When synthesizing filters, the value of Q-factor has
decisive importance for their selectivity [2]. Taking these
values into account is the most relevant when realizing the
filters with losses in reactive elements (inductivities and
capacities) and during the synthesis of the active RC-
filters. High Q-factor value in passive analog schemes
requires either the higher quality of the reactive elements
(smaller losses) or the increased filter order. In case of the
active RC-filters the higher Q-factor of filter section with
order 2 can require more active (such as transistors or
operational amplifiers) and passive elements. That is why
it’s so important to develop the algorithms for the optimal
filters design with the specified or minimal poles Q-factor.
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Since a transfer function (TF) of the elliptic filer with
order 2 has complex conjugate poles and purely imaginary
zeros, it can be written the following way
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where b; and a; are the quotients of a numerator and
denominator polynomials of complex variable p.
For quadratic reduced polynomial of type
p2 +ap+ag,
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where a; and a, are polynomial quotient. In this case
Q-factor can be calculated the following way
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When considering Q-factor of the elliptic filter TF
numerator, it can be shown that the Q-factor tends to
infinity, since the zeros are purely imaginary (quotient of p
is zero). Therefore, Q-factor of zeros is omitted in the
computation equations during design of filter schematic.
However, it’s obvious, that the scheme of the 2-nd order
filter section with fractionally rational TF (1) shall be more
complicated than the scheme of the 2-nd order filter
section with polynomial TF.

Since the TF denominator of the stable circuit is the
Hurwitz polynomial, the roots of this polynomial can be
either real negative, or they can form the complex
conjugate pairs with negative real part. In both cases, the
Q-factor of the pole pair can be calculated by following
formula [3]
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where a and S are real and imaginary parts of the pole pair,
respectively.
The expression (4) makes it obvious that, when the

Q-factor of the poles increases, they tend to the imaginary
axis of the complex plane, which increases sensitivity of
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the entire filter. There is another obvious fact — the purely
real pole with the multiplicity of 2: p; = pi* = -a, has the
minimal Q-factor. Synthesis of such filters is described by
authors in their article [4]. The same article contains table
of TF quotients for some orders.

Filter design problem with specified Q-factor

The filter synthesis problem with specified Q-factor
parameter was solved by applying optimization
procedures.

During the filter synthesis, designer usually specifies
bounds for pass band and for stop band. The AFR is not
allowed to exceed these bounds. These requirements can
be shown graphically as two passages (Fig. 1).

Fig. 1. AFR passages for pass band and stop band

For solution of similar problems, MATLAB package
includes different Optimization toolbox procedures, for
example, fminsearch and fmincon [5]. In order to switch
from the problem with multiple criteria to the problem with
single criteria, we shall use linear convolution method [6]

L
F(x)= %ai fi(x), (5)

where f;(x) are penalty functions for controlled parameters
and o; > 0 — weight quotients, which can be considered to
be the relative indexes of the penalty functions importance;
L is the number of the penalty functions. In such case, the
multiple criteria optimization problem shall be following

F(x)= EL:ai fj (X) = min;
i=1

L
Yai=1 (6)
i1

To solve this problem, we need to compose the
penalty function for pass band of the filter. This function
can be represented by a sum of the all AFR samples, which
exceed the given bound for band pass flatness (Fig. 2).
Such sum can be written by the following expression

K
f1(x) = El[H min — H (Xva)]*

when H(X,Q) < Hpmin» (7

78

where Q; = 0, Q¢ = 1 (normalized cut-off frequency),
H(x, Q) is the absolute value of the transfer function for
current argument x values at the frequency Q, Hpi, is
minimal allowed value of the AFR pass band.
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Fig. 2. Forming AFR error in pass band
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In similar way, we must also compose the penalty
function for stop band. This function can also be
represented by a sum of the all AFR samples exceeding
given minimal attenuation at the control frequency (Fig. 3).
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3. Forming AFR error in stop band

Fig.
Such sum can be written by the following expression

M
fa(x) = Zl[H max + H (Xva)],
m=
when H(X,Qp) > H max: (8)
where Q; is the normalized limiting frequency of the stop
band (control frequency); Qu is AFR calculation limiting
frequency; H(x,Q,) is the absolute value of the transfer
function for current argument x values at the frequency
Qi Hmax is maximal allowed value of the AFR stop band.
For this specific problem we had to add another
penalty function to control the Q-factor of poles. This
function can be represented by a sum, which consists of the
Q-factor values exceeding given value

n
f3(x) = 2Qi. Qi > Qmax: )
i=1
where Q; is the Q-factor of the i-th complex conjugate pole
pair; n is the number of these pole pairs; Quax is specified
Q-factor limit.

Calculation algorithm for design of the filters with the
specified Q-factor parameter

Authors of this article created a function for
MATLAB software package. This function calculates



quasi-elliptic prototype, which complies the specified AFR
and Q-factor requirements
The algorithm (Fig. 4) of this problem solution is
given further as a sequence of following actions.
1. Specify prototype requirements:
N — the order of filter;
Nz — the number of zero pairs;
Qmax — maximal allowed Q-factor of pole pairs;
amax — AFR band pass flatness, dB;
amin — Stop band minimal attenuation, dB;
Qy - control frequency.

2. Calculate analog elliptic prototype. Calculate
Chebyshev prototype if number of zero pairs Nz = 0.
Create an argument x for target function F(x) and
minimize it according to (6).

Q-factor maximization: if maximal Q-factor doesn’t
reach specified limit, increase an;, and repeat step 2.
Minimization of the transition band width: if minimal
attenuation at the control frequency exceeds given
value, increase control frequency and repeat steps 2
and 3.

At the end of the optimization procedure the program
outputs zero and pole values for a prototype, which
complies specified requirements.

END
iMinimization of YES
itransition band width
: NO
o = O+ AQY -20lg[H{Q) | < amin

Q-factor maximization YES
NO
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Requirements: Optimization
N, Nz, Q masr Qi AFR Target
Amaxs ?:icn, T [H(p) | * Function
F(X)
Elliptic or
Chebyshev F(X) minimization
prototype

Zeros: £
Poles: P

Fig. 4. Blog-diagram of the optimization algorithm

Authors of this article created a program for
MATLAB software pack, which calculates and
sequentially improves (if this is possible) the quasi-elliptic
filter, which complies specified requirements.

Quasi-elliptic prototype example with specified
Q-factor of poles

Let’s consider a prototype with following
requirements: the order is N = 7, number of zero pairs is
N, = 3. Maximal pole pair Q-factor is limited to a value of
Qmax = 5. Let’s also specify band pass flatness aya = 0.3
dB and minimal attenuation a.;, = 65 dB starting by
control frequency of Qx = 1.6.
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By using MATLAB program, which realizes
described before algorithm (Fig. 4), we calculated values
of zeros and poles. These values are available in Table 1.

Table 1. Poles and zeros of the synthesized prototype TF

Poles Zeros
01165623 + 1.08665461 .
03264229 + 06176561 ey
0.1825970 + 1.0227336i e

04103039 *

With these zeros and poles it is possible to calculate
transfer function of the prototype in following way:

N, N
H _ 2 i2 1 ,
) El(p +|Z| jiljlp—Pi

(10)

where z; and p; are zeros and poles of the transfer function,
respectively, N is the number of zero pairs, N is the order
of prototype.

For comparison, the plot contains also curve of the
Chebyshev prototype of the 7-th order with AFR pass band
flattening apmax = 0.3 dB.
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Fig. 5. Comparative curves of the attenuation for quasi-elliptic
and Chebyshev prototypes

Even though maximal Q-factor of Chebyshev
prototype  poles exceeds the specified value
(max(Q) = 7.68), the synthesized quasi-elliptic prototype
provides attenuation of 65 dB at the lower control
frequency. Note that Chebyshev prototype of given order
can’t satisfy given requirements at all.
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Fig. 6. Pass band of the synthesized quasi-elliptic prototype

Also note that behaviour of the transfer function in
the passband is equiripple (Fig. 6), and behaviour in the
stop band is also sufficiently close to equiripple (Fig. 5).

Usually such filters realized as a cascade of the 2-nd
order filter sections with a transfer function (1). Therefore,
such synthesis approach described in this article simplifies



realization of a filter, especially realization of the filter
sections with high Q-factor values.

It is obvious, that selectivity of the synthesized
prototypes is significantly lower, than selectivity of elliptic
prototypes. However elliptic filters are much harder to
realize, since all their filter sections have fractionally-
rational transfer functions. Chebyshev filters, on the other
hand are much simpler, but their transfer functions doesn’t
have zeros, which can significantly increase selectivity.

Conclusions

This article describes the algorithm for quasi-elliptic
filters synthesis with specified Q-factor parameter. Such
approach allows simplifying of the filter schematics,
compared to ones of the elliptic filters. At the same time,
selectivity of the quasi-elliptic filters is often higher than
selectivity of the Chebyshev filters of the same order (Fig.
5) with Q-factor of poles greater than specified, in some
cases much greater.

In the example prototype it has been shown, that AFR
of the synthesized prototype can be equiripple in both
frequency bands.
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This article describes filters with specified Q-factor parameter of poles. This reduces complexity of circuitry, helps to pick elements
with reasonable parameters and makes it easier to adjust circuit. There is also demonstrated algorithm for calculations of the transfer
function, which uses optimisation functions of MATLAB software package. This article contains graphs of the amplitude-frequency
response curves for synthesized filters. IIl. 6, bibl. 6, tabl. 1 (in English; abstracts in English and Lithuanian).
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elektrotechnika. — Kaunas: Technologija, 2010. — Nr. 9(105). - P. 77-80.

Filtrai su nustatytais Q faktoriaus poliy parametrais supaprastina schemas. Pateiktas perdavimo funkcijos apskai¢iavimo algoritmas,
kuris taiko MATLAB programy paketo optimizavimo funkcijas. Pateiktos susintetinty filtry dazninés amplitudeés charakteristikos. 11. 6,

bibl. 6, lent. 1 (angly kalba; santraukos angly ir lietuviy k.).
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