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Introduction 

 
Quantization is a very important part in almost all 

modern telecommunication systems, and it is usually done 
in two steps: firstly quantization with high number of 
levels is done with the aim of the analog-to-digital 
conversion and after that the second quantization with 
smaller number of levels is done with the aim of 
compression. Let’s denote the first N0-level quantizer with 
Q0 and the second N-level quantizer with Q, N < N0. Input 
of the first quantizer Q0 consists of continual input samples 
which can take any real value from the interval ),( +∞−∞ . 
But, input of the second quantizer Q consists of discrete 
input samples which can take only N0 discrete values, 
equal to the output levels of the first quantizer Q0. 
Therefore, input samples of the second quantizer Q are 
bounded by amplitude. Quantizers with continual input 
samples are largely analyzed in literature (e.g. [1] and the 
paper [2] – where design of nonuniform quantizers for 
exponential source for very small bitrates was done). 

Since the most used types of signals (speech, audio, 
video) are not stationary (i.e. signal variance varies with 
time), adaptation should be applied to achieve good signal 
quality in the wide range of input variances. Adaptation 
can be forward and backward. The forward adaptation was 
analyzed in [1, 3, 4, 5]. It is known [6] that the forward 
adaptation gives for about 1 dB higher SQNR compared to 
the backward adaptation.  

In this paper, the uniform quantizer for discrete input 
samples is analyzed, for Laplacian source. Uniform 
quantizer is considered since it is the most used type of 
quantizers.  

Firstly, the fixed uniform quantizer is analyzed, and it 
is shown that performances of the quantizer for discrete 
and for continual input samples are different. For continual 
input samples, the overload distortion exists which causes 
the fall of SQNR (signal-to-quantization noise ratio) for 
high values of the variance. For discrete input samples 
(which are bounded by amplitude) there is no overload 
distortion and SQNR continues to increase for high 
variances.   

After that, the forward adaptation is done for the 
uniform quantizer with discrete input samples. It is shown 
in this paper that adaptation gives good performances only 
if 0σσ <  ( 2σ  is the input variance and 2

0σ  is the referent 
variance). If 0σσ > , adaptation gives worse performances 
compared to the fixed quantizer, and therefore adaptation 
should not be done in this case. This is the main difference 
compared to the forward adaptive quantizer for continual 
input samples, where adaptation gives good performances 
in both cases: when 0σσ <  and when 0σσ > . There is 
another effect for forward adaptive quantizer for discrete 
samples: SQNR significantly increases for very small 
variance 2σ , which is not the case for continual input 
samples. We can conclude that design and performances of 
the forward adaptive quantizer for discrete and for 
continual input samples are very different. The difference 
in performances is very high when 16/0 <NN , but for 

16/0 ≥NN  this difference becomes small.  
 
Performanse of fixed uniform quantizer for continual 
and discrete input signal 

 
A. Uniform quantizer with continual input samples 
                                         
 Uniform quantizer Q will be considered, with the 
following parameters: N-number of levels, maxx - maximal 
amplitude and Nx /2 max=∆ -quantization stepsize. 
Thresholds are defined as ∆+−= ixxi max , Ni ,...,0=  
and representation levels as ∆−+−= )2/1(max ixyi , 

Ni ,...,1= . Samples of the signal, which come on the input 
of the quantizer, are continual, i.e. they can take any real 
value from the interval ),( ∞−∞ . In this paper we consider 
zero mean input signal with Laplacian distribution, with 
variance 2σ , whose pdf (probability density function) is  
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During quantization, an error is made which can be 
measured with distortion. The total distortion D is equal to 
the sum of the granular gD and the overload ovD  

distortion, i.e. ovg DDD += . Granular distortion is 

defined as ∫−

∆
= max

max
)(

12

2 x

xg dxxpD  and overload distortion 

as ∫
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x Nov dxxpyxD . For )(xp given with (1), 

these expressions become: 
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where σσ /0=t  and 0max / σxk = . 2
0σ  denotes a referent 

variance. Design of the quantizer is done for the referent 
variance. By minimizing distortion D, i.e. solving the 

equation ( ) 01
=

∂
=∂

k
tD , the optimal value of the factor k, 

denoted with kopt is found. On the basis of kopt , maximal 
amplitude and minimal distortion are calculated. Values of 
the parameter kopt for some values of levels’ number N are 
given in Table 1. 
 
Table 1. Values of parametar kopt for some values of the number 
of representation levels N 

N 16 32 64 128 256 512 
kopt 3.71 4.49 5.3 6.15 7.02 7.91 

 
Quality of the quantized signal is usually defined with 

signal-to-quantization noise ratio SQNR 

 )/(log10[dB] 2
10 DSQNR σ= , (4) 

where 2σ  is a variance of the input signal, and D is total 
distortion. SQNR of the uniform quantizers for continual 
input samples is shown in Fig 1. 
 
B. Discrete input 
 

In this section we will analyze performances of the N-
level uniform quantizer Q, whose input consists of samples 
previously quantized with the N0-level uniform quantizer 
Q0. So, input samples of the quantizer Q can take N0 
discrete values, which are equal to the output levels of the 
quantizer Q0, denoted with },...,{

01 NxxX = . This 
situation is very common in practice – quantization with 
high number of levels is done first to achieve the analog-
to-digital conversion, and after that quantization with 
smaller number of levels is done to achieve compression. 
Quantizers Q and Q0 have the same maximal amplitude 

maxx . The stepsize of the quantizer Q0 is 

0max0 /2 Nx=∆ . Probabilities of the discrete levels from 

the set X are =)( ixP =∆ 0)( ixp ( ) 0/2exp))2/(1( ∆− σσ ix , 

1,...,2 0 −= Ni and )/2exp()2/1()()( max1 0
σxxPxP N −== . 

Output levels of the quantizer Q are denoted with 
Njy j ,...,1, = . It is valid that LNN ⋅=0 , where L is an 

integer.  This means that L discrete input levels 
XxxX jLjj ∈= },...,{ 1  are mapped to one output level 

Njy j ,...,1, = . Since discrete samples are amplitude 
limited with maxx , quantizer Q will have only the granular 
distortion given with 
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Fig. 1. SQNR of the uniform quantizers for continual input 
samples for different number of levels N 
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Fig. 2. SQNR of the fixed uniform quantizer for discrete input 
samples with N0 = 256, for different values of N 
 

SQNR for the uniform quantizer Q, for discrete input 
samples is in Fig. 2 We can see from Fig. 1 and Fig. 2 we 
can see that SQNR curves are very different for continual 
and for discrete input samples. For continual input samples 
there is overload distortion and SQNR falls for 0σσ > . 
For discrete input samples there is no overload distortion, 
and therefore SQNR continue to increase for 0σσ > . This 
is one of the motives for analysis and construction of 
adaptive uniform quantizers for discrete input samples. 
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Performance of adaptive uniform quantizer for discrete 
input signal 

 
In this section, the forward adaptation of the uniform 

quantizer with discrete input samples will be done. Since 
the forward adaptation is well known in literature [1, 3, 4, 
5], it will be described here very shortly. The scheme of 
the forward adaptive quantizer is shown in Fig. 3. Firstly, 
there is N0-level uniform quantizer Q0 whose input consists 
of continual samples and whose output consists of discrete 
samples. These discrete samples are input samples for the 
adaptive quantizer. The adaptive quantizer consists of a 
buffer, a gain estimator, a quantizer Qgain, a divider and a 
fixed quantizer Qfixed. Frame of the discrete input samples 
is formed in the buffer. This forward adaptation process 
works on the frame-by-frame basis. Firsly, the variance of 
the frame 2σ  is estimated and gain 0/ σσ=g  is 
calculated in the gain estimator. The gain g is quantized 
with the M – level log-uniform quantizer Qfixed (it is 
uniform in the logarithmic domain of the gain: 

g10log20 ). We obtain the quantized gain which can take 
M discrete values Mjg j ,...,1,ˆ = . jĝ  is sent to the 

receiver as an additional information with M2log bits. 
Samples from the frame in the buffer are divided with jĝ  
and quantized with the fixed quantizer Qfixed. Quantizers Q0 

and Qfixed are designed for the same referent variance 2
0σ  

and they have the same maximal amplitude 0
f
max σkx = . 

So, discrete input samples of the adaptive quantizer are 
bounded in amplitude with f

maxx . Thresholds of the fixed 

quantizer Qfixed are denoted with Nixi ,...,0,f = and 

representation levels are denoted with Niyi ,...,1,f = .  
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Fig. 3. The scheme of the forward adaptive quantizer for discrete 
input samples  

 
Parameters of the adaptive quantizer are: a

maxx  - 

maximal amplitude, Nixi ,...,0,a =  - thresholds and 

Niyi ,...,1,a =  - representation levels. These parameters 
are constant inside one frame, but their values change from 
one frame to another. Let’s suppose that in some frame 
quantized gain takes value jĝ . Then, in that frame, it is 

valid that σσσσ kkxgx j === 00
f
max

a
max )/(ˆ , fa ˆ iji xgx = , 

Ni ,...,0=  and Niygy iji ,...,1,ˆ fa == .  
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Fig. 4. The range of the fixed and the forward adaptive quantizers 
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Fig. 5. SQNR of adaptive uniform quantizer for discrete input 
samples with N0 = 256  levels  for different number of levels N 
 

Using adaptation, we adjust the amplitude range of 
the quantizer to the variance of the input signal. In Fig. 4, 
the range ),(I f

max
f
maxf xx−= of the fixed quantizer Qfixed is 

shown firstly. After that, the range ),(I a
max

a
maxa xx−=  of 

the adaptive quantizer is shown for two cases: when 1<g  
(i.e. 0σσ < ) aI  becomes narrower than fI  and when 

1>g  (i.e. 0σσ > ) aI  becomes wider than fI .  The case 
when 1>g  will be deeply analyzed. In this case 

f
max

a
max xx > , so N representation levels are placed in 

wider range ),( a
max

a
max xx− . But, as it was said earlyer, 

input samples are bounded in amplitude with f
maxx . Input 

samples cannot take values from the range 
),(),( a

max
f
max

f
max

a
max xxxx ∪−− and therefore representation 

levels in that range are not used. So, not all N 
representation levels are used, but only N1 (N1 is some 
number smaller than N). Since smaller number of 
representation levels is used, higher distortion (i.e. lower 
SQNR) is obtained, compared to the fixed quantizer Qfixed. 
So, we can conclude that if adaptation is done when 1>g , 
worse performances are obtained. Therefore, adaptation 
should not be done in this case. We can introduce the 
following rule: adaptation should be done only when  

 f
max0 xk <⇔< σσσ . (6) 
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If condition (6) is not fulfilled, the fixed quantizer 
Qfixed should be used. This is the main difference between 
adaptive quantizers for continual and for discrete input 
samples, because for continual input samples adaptation 
give good results in both cases: 1<g  and  1>g .  

Dependence of SQNR on the input variance, for the 
forward adaptive quantizer with discrete input samples is 
shown on Fig. 5. From Fig. 5 we can see an interesting 
effect: SQNR increases for small σ , i.e. small g. Now, we 
will explain this effect considering one example with 
parameters 2560 =N , 32=N , 8=L , and 4/1=g . For the 
fixed quantizer, we choose 32 output levels from the set of 
256 input levels, i.e. matching between input and output 
levels is 12.5%. For the adaptive quantizer it is valid that 

f
max

a
max )4/1( xx = . Therefore, inside the range of the 

adaptive quantizer ),( a
max

a
max xx−  there are 644/0 =N  

input levels and among them we choose 32=N  output 
levels. So, for the adaptive quantizer, matching between 
input and output levels is 50%. If some input level is equal 
to some output level, distortion for that input level is zero. 
Therefore, if percentage of matching between input and 
output levels increases then distortion decreases and then 
SQNR increases. It is clear from the above example that 
matching percentage increases when g (i.e. σ ) decreases.  

We can see from Fig. 5 that SQNR curve 4 for 
16=N  (i.e. when 16/0 =NN ) is similar to SQNR curves 

for the forward adaptive quantizer with continual input 
samples, described in [5]. We can conclude that behavior 
of the adaptive uniform quantizer for discrete input 
samples is similar to behavior of the forward adaptive 
uniform quantizer for continual input samples when 

16/0 ≥NN , but these behaviors are very different when 
16/0 <NN .  

 
Conclusions 
 
 The uniform quantizer for discrete input samples was 
analyzed in this paper. It is very common in practice and 
therefore, its analysis is very significant. It was shown that 

SQNR dependence on the input variance for discrete input 
samples differs compared to the case for continual input 
samples, both for the fixed and for the adaptive quantizers. 
For the fixed quantizer, there is no fall of SQNR for 

0σσ >  since there is no overload distortion. For the 
adaptive quantizer, SQNR significantly increases for very 
small σ , since the matching between input and output 
levels increases. Also, there is one significant difference in 
the construction of the forward adaptive quantizer for 
discrete input samples: adaptation should be done only 
when 0σσ < .  
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