
133

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 10(106)
 ELEKTRONIKA IR ELEKTROTECHNIKA

MICROELECTRONICS
T 171

MIKROELEKTRONIKA

Time-Efficient Adaptive Segmentation Algorithm forIC Layers Images
G. Masalskis, R. Navickas
Vilnius Gediminas Technical University, Department of Computer Engineering,
Naugarduko g. 41, LT-03227, Vilnius, phone: +370 684 23229, e-mail: giedrius.masalskis@el.vgtu.lt

Introduction

Each automated image analysis task requires
segmentation step to separate foreground objects from
image background. There are many different approaches to
solving segmentation problem, such as thresholding,
region growing, graph analysis [1], region splitting and
merging, rule-based segmentation, histogram-based
segmentation and mixed algorithms [2]. Most suitable
approach is selected depending on properties of input
image. Threshold function is one of the most often selected
operations used to segment images. It translates the image
from colour or greyscale data (multiple bits per pixel) to
the binary representation of only foreground or background
pixels (1 bit per pixel). This enables further application of
binary image specific analysis and processing algorithms.
Fundamental bi-level threshold function, used in every
threshold algorithm, is defined as





≥
<

=
, when ,1
, when ,0

TP
TP

B (1)

where P represents pixel intensity value in source image
and T represents threshold value [1]. Many threshold
algorithms concentrate on selecting suitable threshold
value T for complete image. While global T method is
useful in many situations, there are cases where more
sophisticated approach is required. For example, if image
contains regions of variable intensity, global T becomes
useless when background intensity exceeds T value in
some regions. And it is very important to separate only
specific foreground areas while disregarding brightness
inequality during image segmentation.

In our research we perform analysis of integrated
circuits images which are obtained using optical
microscopes. Sometimes these images are on the edge of
physical capabilities of optical microscopy. General traits
of such images are: varying brightness throughout image,
blurred or out of focus features of interest, lens dust, sensor
dust and sensor noise. It is possible to filter out dust and
noise but the biggest problem for further analysis remains
uneven brightness in different parts of image, since our
analysis algorithms depend on binary representation. Using
global threshold function produces inconsistent, generally

unsatisfying results. This is why it is important to have a
more sophisticated, locally adaptive threshold function
which would be immune to changing brightness conditions
and which would produce good binary image with analysis
objects set as foreground pixels.

Many different algorithms have been already
proposed for calculation of image global threshold t in
scientific publications. Approaches such as iterative (bi-
level) threshold [1], variance based threshold [3] or
entropy based algorithms [4–6] provide good results on
uniform intensity images [7] but are not suitable for
adaptive T applications. Locally adaptive threshold T
calculation proposals [8-12] are computationally complex
and thus unsuitable for our type of input images either
because of unsatisfactory segmentation results or
calculation time required for each image.

We chose to create new specific adaptive threshold
function, suitable for our needs in IC layer image
segmentation.

Objectives

The goal was to create segmentation algorithm with
the following characteristics:

• It should be able to separate foreground objects in
varying brightness conditions;

• Separated foreground objects should have smooth,
accurate edges;

• Noise immunity would be an advantage;
• Possible computationally fast implementation.

Methodology

Because it is able to operate in varying brightness
conditions, our custom threshold function will be referred
as adaptive threshold in this paper. Its algorithm consists
of the following steps:

1. Input greyscale image Min.
2. Calculate global threshold value Tg.
3. Take pixel Pi.
4. Calculate brightness value Ii in pixel window Wpi.
5. Calculate local threshold value Tli in threshold

window Wti.
6. Calculate absolute difference D between Ii and Tli.

134

7. Assign pixel binary value Bi: use global threshold
Tg if D is less than sensitivity s, else use local
threshold Tli. Set Bi as foreground if Ii is greater or
equal to threshold value.

8. Repeat steps 3 to 7 until every pixel Pi has been
assigned a binary value Bi.

9. Output binary image Mout.
This algorithm is visualized as flowchart in Fig. 1 and

Fig. 2 displays image–threshold window–pixel window
interaction.

Start

Input image
Min

Calculate global
threshold value

Tg

Take first
pixel

Pi = P1

Calculate pixel
intensity value Ii in
pixel window Wpi

Calculate local
threshold value Tli in
threshold window Wti

|Ii - Tli| < s ? Ii < Tli ?

Ii < Tg ? Bi = foreground

Bi = background

Take next pixel
Pi = Pi+1

Pi is last pixel?

End

Store image
Mout

T

T

T F

F

F

F

T

Fig. 1. Adaptive threshold algorithm flowchart

Our method is based on multiple average value
calculations. Algorithm proposed in this paper has three
tuneable values: wp - length of pixel window side, wt -
length of threshold window side, s - sensitivity value.

There are two windows of adjustable sizes. Average
value in smaller window (pixel window Wp) defines its
centre pixel brightness value I. It is expressed as arithmetic
mean of all pixel intensities in the window:

 ∑
=

=
n

i
iP

n
I

0

1 , (2)

where n=wp
2 – pixel count in small window, Pi – i-th

pixel’s intensity value in window Wp.

Average value in larger window (threshold window
Wt) defines local threshold value Tl which is also
calculated as arithmetic mean of pixel intensities in larger
window

 ∑
=

=
m

j
jl P

m
T

0

1 , (3)

where m=wt
2 denotes pixel count in threshold window Wt.

Sensitivity s represents lowest reliable value of
absolute difference between pixel intensity value I and
local threshold value Tl. If value lTI − is higher or equal
than s then we have a reliable calculation of foreground or
background pixel (2). If absolute difference is lower than s
then threshold value of such pixel is calculated using
expression in third line of equation (2):









<−
≥−≥
≥−<

=
 , when ,
, and when ,1
, and when ,0

sTIB
sTITI
sTITI

B

lgt

ll

ll
 (4)

where B is final pixel binary value after threshold
operation, Bgt indicates binary value assignment by
comparison to arithmetic mean of all pixel intensity values
of complete image Tg:





≥
<

=
. when ,1
, when ,0

g

g
gt TI

TI
B (5)

Our proposed threshold calculation approach has
several advantages:

• it is more noise immune than simple bi-level
threshold function,

• segmented binary features have smooth edges,
• some irrelevant features get eliminated depending

on Wp and Wt values.
Some of weak points of the algorithm:
• redundant features might emerge, if image

contains areas of continuous intensity of size
larger than threshold window size Wt,

• calculation complexity of O(n2), because intensity
averages for pixel and threshold windows must be
calculation for every pixel in image.

Optimization

We were able to solve calculation complexity
problem by applying an optimization based on sum table,
which is described in paper [13]. We have adopted sum
table approach to pre-calculate image intensity and use it
during average intensity calculation in windows Wt and Wp.
It works by initially parsing every pixel in the image and
storing integral sum (running sum) which depends on
upper and left neighbour pixels

 () () ()
()).1,1(1,

,1,,
−−−−+

+−+=
yxsyxs

yxsyxPyxs (6)

In equation (4) P(x,y) is the intensity level of pixel at
coordinates x and y and s(x,y) is the integral sum for that
pixel. Having integral sum table, total intensity Itotal for any

135

window of size w in the image can be calculated using the
following equation:

() ()
()
()

).1,1(
1,1
1,1

1,1,

−−+
+−−+−
−−+−−

−−+−+=

yxs
ywxs
wyxs

wywxsyxItotal

(7)

This reduces computational complexity from O(n2) to
O(n) which means calculation time now increases linearly
with image size increase instead of quadratic increase.

Innovations

Our algorithm introduces several innovations to
classic adaptive threshold approach:

• It uses local average intensity value not only for
threshold calculation but also for pixel value
calculation, which provides smoother edge lines
to segmented objects.

• Sensitivity parameter s is the solution for
continuous intensity regions larger that local
threshold window, which otherwise would
introduce unnecessary objects into segmented
image.

• It introduces speed optimization based on integral
tables [13] which enables fast adaptive filtering
applications.

Experimental Testing

Fig. 2. Pixel-level image fragment

Our adaptive threshold algorithm was experimentally

tested on Metal1 and Metal3 IC layer images obtained
using optical microscope at 4000 times magnification.
Image resolution is 29.99 pixels per micrometer which
means physical size of each image is approximately 42 µm
× 34 µm. The IC was manufactured using CMOS 0.18 µm
node, size of smallest features in the images is 240 nm
(metal wire lines) or 7.2 pixels. Such feature sizes
approach physical capabilities of optical microscopy for
diffraction effect reason. This is the cause of low image
quality which manifests as blurry objects and variable

brightness areas. Our threshold algorithm takes these
image properties into consideration and has means to
extract most usable binary object data.

Unprocessed (direct from camera) images were used
as input to threshold functions. Before statistically
analysing the results, all images were filtered to discard
objects smaller than minimal size of IC manufacturing
technology node, which is equals 240 nm and
approximately to 7.2 pixels, respectively.

The following images show filtering results of our
algorithm compared to global t threshold algorithms (Fig.
3).

To measure how our adaptive algorithm performs
compared to other algorithms, we analysed resulting binary
images to calculate how close quality of each of them
comes to a perfect segmentation results, obtained by
human operator. The following criteria were evaluated and
compared:

• Statistical evaluation of object edge pixel
distances from human-segmented object edges
pixels.

• Quantity of object pixels in segmented images,
which exceed maximum allowed distance from
perfectly segmented object edges. The distance,
designated by dmax is set to ½ size of minimum
feature size in images. dmax = 120 nm ≈ 3.6 pixels.

Since iterative threshold algorithm gave unmistakably
worst results, it was removed from comparison and only
adaptive threshold and manual bilevel threshold were
quantifiably compared to the perfect segmentation results.

(a) Original image

(b) Iterative threshold image

480nm

pixel

pixel
window Wpi

threshold
window Wti

136

(c) Manual threshold image

(d) Adaptive threshold image
Fig. 3. Experimental results of second fragment thresholding

In Fig. 4 we can see part of image, where object

contour obtained from perfect segmentation is overlapped
with contour from our adaptive threshold segmentation. In
both sample image segmentation results, there were only
limited number of locations where fractures occurred in
objects and no cases of missing objects or maximum
allowed pixel distance error exceeded.

Fig. 4. Object contour differences between perfect segmentation
and proposed threshold algorithm

In Fig. 5 we can see overlapped contour comparison
between best manual bilevel threshold result and perfect
segmentation result. In two sample images many erroneous

object fractures and junctions are visible, along with
redundant objects and maximum allowed pixel distance
errors.

Fig. 5. Object contour differences between perfect segmentation
and bilevel threshold algorithm

Summary

Table 1 gives summary results of statistical
comparison of contour pixel distribution between perfectly
segmented image edges and edges obtained from
foreground objects of other two segmentation algorithm
results.

Table 1. Statistical figures for distance between ideally
segmented object contour pixels and object, obtained using
adaptive and bilevel segmentation algorithms, pixels

Sample /
algorithm

Mean
value,
pixels

Maximum
value, pixels

Standard
deviation

S1 adaptive 0,18 2,23 0,38
S1 bilevel 1,20 29,27 1,81

S2 adaptive 1,18 12,64 0,60
S2 bilevel 2,75 31,21 3,09

All the statistical parameters show that objects

obtained using our adaptive segmentation algorithm are
reliably better in comparison to bilevel thresholded objects
statistical data. Sample 1 is generally easier to segment
than sample 2. Its object distribution and brightness is
more even compared to sample 2. Both samples represent a
common case of IC layer images. Sample 1 ideal contour
image contains 168983 edge pixels and sample 2 image
contains 60884 edge pixels.

To compare segmentation accuracy, difference
between each ideal contour pixel and corresponding edge
pixel in segmented image was calculated. In our case
corresponding edge pixels are the closest ones to the ideal
contour pixels.

Mean values in Table 1 represent how far on average
segmented edge pixels were from ideal contour pixels.
Maximum values represent worst cases in each sample and
segmentation algorithm. Standard deviation actually shows
how consistent are edge pixel distances from ideal contour
when using different segmentation methods. Our proposed
adaptive segmentation algorithm gives standard deviation
5 times smaller than ordinary bilevel segmentation

Sample 1 Sample 2

perfect contour
(gray)

bilevel contour
(black)

Sample 1 Sample 2

perfect contour
(gray)

adaptive
contour (black)

137

algorithm. This clearly shows that our algorithm gives
object edges much more similar and close to ideal
segmented object edges.

Calculation results visible in the Table 1 support the
visual observation results of Fig. 6 and Fig. 7.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Adaptive Bilevel

Fig. 6. Adaptive threshold algorithm performance compared to
manual bilevel threshold on sample 1 image

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Adaptive Bilevel

Fig. 7. Manual bilevel threshold algorithm performance
compared to manual bilevel threshold on sample 2 image

In fact, more than 99% of all contour pixels are

located closer than 3.6 pixels from perfect contour edge
when using adaptive threshold. This means that our
algorithm is suitable for practical application because its
precision is high enough and error rate in segmented
images is very low. High precision in combination with
low calculation complexity due to sum table application

allowed us to perform segmentation of thousands of
images with very successful results.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Adaptive
(S1)

Bilevel
(S1)

Adaptive
(S2)

Bilevel
(S2)

Adaptive
(total)

Bilevel
(total)

Fig. 8. Contour pixel distribution within maximum allowed
distance

Conclusions

Adaptive segmentation algorithm was proposed,
implemented and experimentally tested. The algorithm is
suitable for image segmentation of integrated circuits
layers under varying contrast and lighting conditions and
varying IC sample quality. Our proposed adaptive
segmentation algorithm gives standard deviation 5 times
smaller than ordinary bilevel segmentation algorithm. The
algorithm was optimized for computation speed which in
combination with high segmentation precision makes it
suitable for practical applications.

References

1. Acharya T., Ray A.K. Image Processing Principles and
Applications. – Wiley–Interscience, 2005.

2. Paulinas M., Miniotas D., Meilūnas M., Ušinskas A. An
Algorithm for Segmentation of Blood Vessels in Images //
Electronics and Electrical Engineering. – Kaunas:
Technologija, 2008. – No. 3(83). – P. 25–28.

3. Otsu N. A Threshold Selection Method From Gray Level
Histograms // IEEE Transaction on System, Man, and Cyber,
1979. – Vol. 9. – P. 62–66.

4. Kapur J. N., Sahoo P. K., Wong A. K. C. A New Method
of Gray Level Picture Thresholding Using the Entropy of the
Histogram // Computer Vision, Graphics & Image
Processing, 1985. – Vol. 29. – P. 273–285.

5. Brink A. D., Pendcock N. E. Minimum Cross–Entropy
Threshold Selection // Pattern Recognition. – 1996. – Vol. 29.
– P. 179–188.

6. Abutaleb A. S. Automatic Thresholding of Gray Level
Pictures Using Two–Dimensional Entropy // Computer
Vision, Graphics & Image Processing, 1989. – Vol. 47. – P.
22–32.

7. Masalskis G., Navickas R. Reverse Engineering of CMOS
Integrated Circuits // Electronics and Electrical Engineering.
– Kaunas: Technologija, 2008. – No. 8(88). – P. 25–28.

8. Yanowitz S. D., Bruckstein A. M. A new method for image
segmentation // in Proc. 9th Int. Conf. on Pattern Recognition,
1988. – Vol. 1. – P. 270–275.

9. Feigin M., Sochen N. Segmentation and Denoising via an
Adaptive Threshold Mumford–Shah–like Functional //

138

Proceedings of the 17th International Conference on Pattern
Recognition, 2004. – Vol. 2. – P. 98–101.

10. Sun–Gu Sun, Dong–Min Kwak, Won Bum Jang, Do–Jong
Kim. Small Target Detection Using Center–Surround
Difference with Locally Adaptive Threshold // Proceedings of
the 4th International Symposium on Image and Signal
Processing and Analysis, 2005. – P. 402–407.

11. Blayvas I., Bruckstein A., Kimmel R. Efficient computation
of adaptive threshold surfaces for image binarization //

Computer Vision and Pattern Recognition, 2001. – Vol. 1. –
P. I–737–I–742.

12. Tabbone S., Wendling L. Binarization of color images from
an adaptation of possibilistic c–means algorithm //
Proceedings of the 17th International Conference on Pattern
Recognition, 2004. – Vol. 1. – P. 704–707.

13. Lewis J. P. Fast Normalized Cross–Correlation. – 1995.
Online: www.idiom.com/~zilla/Work/nvisionInterface/nip.pdf.

Received 2010 06 24

G. Masalskis, R. Navickas. Time-Efficient Adaptive Segmentation Algorithm forIC Layers Images // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2010. – No. 10(106). – P. 133–138.

In this paper we introduce adaptive threshold algorithm for grayscale images which substantially enhances object extraction
precision while maintaining robust calculation performance even for very large images. The algorithm was developed for feature
analysis in low quality integrated circuit images obtained using optical microscopy equipment. Our proposed adaptive segmentation
algorithm gives standard deviation 5 times smaller than ordinary bi-level segmentation algorithm when comparing segmented object
contour differences to manually segmented image. This technique has been applied in industry. Ill. 8, bibl. 13, tabl. 1 (in English;
abstracts in English and Lithuanian).

G. Masalskis, R. Navickas. Spartus adaptyvaus segmentavimo algoritmas integrinių grandynų vaizdams // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 10(106). – P. 133–138.

Šioje publikacijoje aprašytas adaptyvaus slenkstinio filtro algoritmas, skirtas prastos kokybės skaitmeniniams integrinių schemų
vaizdams, gautiems optiniu mikroskopu, apdoroti ir analizuoti. Pažymėtina jo savybė yra tikslus objektų kontūrų išskyrimas
(standartinis kvadratinis nuokrypis buvo apie 5 kartus mažesnis nei taikant dviejų lygių segmentacijos algoritmą) ir spartus skaičiavimo
tempas netgi esant labai didelės apimties skaitmeniniams vaizdams. Šis būdas taikomas pramonėje. Il. 8, bibl. 13, lent. 1 (anglų kalba;
santraukos anglų ir lietuvių k.).

	MICROELECTRONICS
	T 171
	Time-Efficient Adaptive Segmentation Algorithm forIC Layers Images
	Introduction
	Objectives
	Methodology
	Fig. 1. Adaptive threshold algorithm flowchart

	Optimization
	Innovations
	Experimental Testing
	Fig. 2. Pixel-level image fragment
	Fig. 3. Experimental results of second fragment thresholding
	Fig. 4. Object contour differences between perfect segmentation and proposed threshold algorithm
	Fig. 5. Object contour differences between perfect segmentation and bilevel threshold algorithm

	Summary
	Table 1. Statistical figures for distance between ideally segmented object contour pixels and object, obtained using adaptive and bilevel segmentation algorithms, pixels
	Fig. 6. Adaptive threshold algorithm performance compared to manual bilevel threshold on sample 1 image
	Fig. 7. Manual bilevel threshold algorithm performance compared to manual bilevel threshold on sample 2 image
	Fig. 8. Contour pixel distribution within maximum allowed distance

	Conclusions
	References

