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Introduction 

Each automated image analysis task requires 
segmentation step to separate foreground objects from 
image background. There are many different approaches to 
solving segmentation problem, such as thresholding, 
region growing, graph analysis [1], region splitting and 
merging, rule-based segmentation, histogram-based 
segmentation and mixed algorithms [2]. Most suitable 
approach is selected depending on properties of input 
image. Threshold function is one of the most often selected 
operations used to segment images. It translates the image 
from colour or greyscale data (multiple bits per pixel) to 
the binary representation of only foreground or background 
pixels (1 bit per pixel). This enables further application of 
binary image specific analysis and processing algorithms. 
Fundamental bi-level threshold function, used in every 
threshold algorithm, is defined as  
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where P represents pixel intensity value in source image 
and T represents threshold value [1]. Many threshold 
algorithms concentrate on selecting suitable threshold 
value T for complete image. While global T method is 
useful in many situations, there are cases where more 
sophisticated approach is required. For example, if image 
contains regions of variable intensity, global T becomes 
useless when background intensity exceeds T value in 
some regions. And it is very important to separate only 
specific foreground areas while disregarding brightness 
inequality during image segmentation.  

In our research we perform analysis of integrated 
circuits images which are obtained using optical 
microscopes. Sometimes these images are on the edge of 
physical capabilities of optical microscopy. General traits 
of such images are: varying brightness throughout image, 
blurred or out of focus features of interest, lens dust, sensor 
dust and sensor noise. It is possible to filter out dust and 
noise but the biggest problem for further analysis remains 
uneven brightness in different parts of image, since our 
analysis algorithms depend on binary representation. Using 
global threshold function produces inconsistent, generally 

unsatisfying results. This is why it is important to have a 
more sophisticated, locally adaptive threshold function 
which would be immune to changing brightness conditions 
and which would produce good binary image with analysis 
objects set as foreground pixels. 

Many different algorithms have been already 
proposed for calculation of image global threshold t in 
scientific publications. Approaches such as iterative (bi-
level) threshold [1], variance based threshold [3] or 
entropy based algorithms [4–6] provide good results on 
uniform intensity images [7] but are not suitable for 
adaptive T applications. Locally adaptive threshold T 
calculation proposals [8-12] are computationally complex 
and thus unsuitable for our type of input images either 
because of unsatisfactory segmentation results or 
calculation time required for each image.  

We chose to create new specific adaptive threshold 
function, suitable for our needs in IC layer image 
segmentation. 

 
Objectives 

The goal was to create segmentation algorithm with 
the following characteristics: 

• It should be able to separate foreground objects in 
varying brightness conditions; 

• Separated foreground objects should have smooth, 
accurate edges; 

• Noise immunity would be an advantage; 
• Possible computationally fast implementation. 

 
Methodology 

Because it is able to operate in varying brightness 
conditions, our custom threshold function will be referred 
as adaptive threshold in this paper. Its algorithm consists 
of the following steps: 

1. Input greyscale image Min. 
2. Calculate global threshold value Tg. 
3. Take pixel Pi. 
4. Calculate brightness value Ii in pixel window Wpi. 
5. Calculate local threshold value Tli in threshold 

window Wti. 
6. Calculate absolute difference D between Ii and Tli. 
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7. Assign pixel binary value Bi: use global threshold 
Tg if D is less than sensitivity s, else use local 
threshold Tli. Set Bi as foreground if Ii is greater or 
equal to threshold value. 

8. Repeat steps 3 to 7 until every pixel Pi has been 
assigned a binary value Bi. 

9. Output binary image Mout. 
This algorithm is visualized as flowchart in Fig. 1 and 

Fig. 2 displays image–threshold window–pixel window 
interaction. 
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Fig. 1. Adaptive threshold algorithm flowchart 
 

Our method is based on multiple average value 
calculations. Algorithm proposed in this paper has three 
tuneable values: wp - length of pixel window side, wt - 
length of threshold window side, s - sensitivity value.  

There are two windows of adjustable sizes. Average 
value in smaller window (pixel window Wp) defines its 
centre pixel brightness value I. It is expressed as arithmetic 
mean of all pixel intensities in the window: 
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where n=wp
2 – pixel count in small window, Pi – i-th 

pixel’s intensity value in window Wp.  

Average value in larger window (threshold window 
Wt) defines local threshold value Tl which is also 
calculated as arithmetic mean of pixel intensities in larger 
window 
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where m=wt
2 denotes pixel count in threshold window Wt. 

Sensitivity s represents lowest reliable value of 
absolute difference between pixel intensity value I and 
local threshold value Tl. If value lTI −  is higher or equal 
than s then we have a reliable calculation of foreground or 
background pixel (2). If absolute difference is lower than s 
then threshold value of such pixel is calculated using 
expression in third line of equation (2): 

 








<−
≥−≥
≥−<

=
            ,  when ,
,  and  when ,1
, and  when ,0

sTIB
sTITI
sTITI

B

lgt

ll

ll
 (4) 

where B is final pixel binary value after threshold 
operation, Bgt indicates binary value assignment by 
comparison to arithmetic mean of all pixel intensity values 
of complete image Tg: 
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Our proposed threshold calculation approach has 
several advantages:  

• it is more noise immune than simple bi-level 
threshold function,  

• segmented binary features have smooth edges, 
• some irrelevant features get eliminated depending 

on Wp and Wt values. 
Some of weak points of the algorithm:  
• redundant features might emerge, if image 

contains areas of continuous intensity of size 
larger than threshold window size Wt, 

• calculation complexity of O(n2), because intensity 
averages for pixel and threshold windows must be 
calculation for every pixel in image. 

 
Optimization 

We were able to solve calculation complexity 
problem by applying an optimization based on sum table, 
which is described in paper [13]. We have adopted sum 
table approach to pre-calculate image intensity and use it 
during average intensity calculation in windows Wt and Wp. 
It works by initially parsing every pixel in the image and 
storing integral sum (running sum) which depends on 
upper and left neighbour pixels 
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In equation (4) P(x,y) is the intensity level of pixel at 
coordinates x and y and s(x,y) is the integral sum for that 
pixel. Having integral sum table, total intensity Itotal for any 



135 
 

window of size w in the image can be calculated using the 
following equation: 
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This reduces computational complexity from O(n2) to 
O(n) which means calculation time now increases linearly 
with image size increase instead of quadratic increase.  

 
Innovations 

Our algorithm introduces several innovations to 
classic adaptive threshold approach:  

• It uses local average intensity value not only for 
threshold calculation but also for pixel value 
calculation, which provides smoother edge lines 
to segmented objects. 

• Sensitivity parameter s is the solution for 
continuous intensity regions larger that local 
threshold window, which otherwise would 
introduce unnecessary objects into segmented 
image. 

• It introduces speed optimization based on integral 
tables [13] which enables fast adaptive filtering 
applications. 

 
Experimental Testing 

 
Fig. 2. Pixel-level image fragment 

 
Our adaptive threshold algorithm was experimentally 

tested on Metal1 and Metal3 IC layer images obtained 
using optical microscope at 4000 times magnification. 
Image resolution is 29.99 pixels per micrometer which 
means physical size of each image is approximately 42 µm 
× 34 µm. The IC was manufactured using CMOS 0.18 µm 
node, size of smallest features in the images is 240 nm 
(metal wire lines) or 7.2 pixels. Such feature sizes 
approach physical capabilities of optical microscopy for 
diffraction effect reason. This is the cause of low image 
quality which manifests as blurry objects and variable 

brightness areas. Our threshold algorithm takes these 
image properties into consideration and has means to 
extract most usable binary object data.  

Unprocessed (direct from camera) images were used 
as input to threshold functions. Before statistically 
analysing the results, all images were filtered to discard 
objects smaller than minimal size of IC manufacturing 
technology node, which is equals 240 nm and 
approximately to 7.2 pixels, respectively. 

The following images show filtering results of our 
algorithm compared to global t threshold algorithms (Fig. 
3).  

To measure how our adaptive algorithm performs 
compared to other algorithms, we analysed resulting binary 
images to calculate how close quality of each of them 
comes to a perfect segmentation results, obtained by 
human operator. The following criteria were evaluated and 
compared: 

• Statistical evaluation of object edge pixel 
distances from human-segmented object edges 
pixels. 

• Quantity of object pixels in segmented images, 
which exceed maximum allowed distance from 
perfectly segmented object edges. The distance, 
designated by dmax is set to ½ size of minimum 
feature size in images. dmax = 120 nm ≈ 3.6 pixels. 

Since iterative threshold algorithm gave unmistakably 
worst results, it was removed from comparison and only 
adaptive threshold and manual bilevel threshold were 
quantifiably compared to the perfect segmentation results. 

 
 

 
 

(a) Original image 
 

 
 

(b) Iterative threshold image  
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(c) Manual threshold image  
 

 
 

(d) Adaptive threshold image 
Fig. 3. Experimental results of second fragment thresholding 

 
In Fig. 4 we can see part of image, where object 

contour obtained from perfect segmentation is overlapped 
with contour from our adaptive threshold segmentation. In 
both sample image segmentation results, there were only 
limited number of locations where fractures occurred in 
objects and no cases of missing objects or maximum 
allowed pixel distance error exceeded. 

 

 
Fig. 4. Object contour differences between perfect segmentation 
and proposed threshold algorithm  
 

In Fig. 5 we can see overlapped contour comparison 
between best manual bilevel threshold result and perfect 
segmentation result. In two sample images many erroneous 

object fractures and junctions are visible, along with 
redundant objects and maximum allowed pixel distance 
errors. 
 

 
Fig. 5. Object contour differences between perfect segmentation 
and bilevel threshold algorithm  
 
Summary 

Table 1 gives summary results of statistical 
comparison of contour pixel distribution between perfectly 
segmented image edges and edges obtained from 
foreground objects of other two segmentation algorithm 
results. 

Table 1. Statistical figures for distance between ideally 
segmented object contour pixels and object, obtained using 
adaptive and bilevel segmentation algorithms, pixels 

Sample / 
algorithm 

Mean 
value, 
pixels 

Maximum 
value, pixels 

Standard 
deviation 

S1 adaptive 0,18 2,23 0,38 
S1 bilevel 1,20 29,27 1,81 

S2 adaptive 1,18 12,64 0,60 
S2 bilevel 2,75 31,21 3,09 

 
All the statistical parameters show that objects 

obtained using our adaptive segmentation algorithm are 
reliably better in comparison to bilevel thresholded objects 
statistical data. Sample 1 is generally easier to segment 
than sample 2. Its object distribution and brightness is 
more even compared to sample 2. Both samples represent a 
common case of IC layer images. Sample 1 ideal contour 
image contains 168983 edge pixels and sample 2 image 
contains 60884 edge pixels.  

To compare segmentation accuracy, difference 
between each ideal contour pixel and corresponding edge 
pixel in segmented image was calculated. In our case 
corresponding edge pixels are the closest ones to the ideal 
contour pixels. 

Mean values in Table 1 represent how far on average 
segmented edge pixels were from ideal contour pixels. 
Maximum values represent worst cases in each sample and 
segmentation algorithm. Standard deviation actually shows 
how consistent are edge pixel distances from ideal contour 
when using different segmentation methods. Our proposed 
adaptive segmentation algorithm gives standard deviation 
5 times smaller than ordinary bilevel segmentation 

Sample 1 Sample 2 

perfect contour 
(gray) 

bilevel contour 
(black) 

Sample 1 Sample 2 

perfect contour 
(gray) 

adaptive 
contour (black) 
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algorithm. This clearly shows that our algorithm gives 
object edges much more similar and close to ideal 
segmented object edges. 

Calculation results visible in the Table 1 support the 
visual observation results of Fig. 6 and Fig. 7. 
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Fig. 6. Adaptive threshold algorithm performance compared to 
manual bilevel threshold on sample 1 image 
 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Adaptive Bilevel
 

Fig. 7. Manual bilevel threshold algorithm performance 
compared to manual bilevel threshold on sample 2 image 

 
In fact, more than 99% of all contour pixels are 

located closer than 3.6 pixels from perfect contour edge 
when using adaptive threshold. This means that our 
algorithm is suitable for practical application because its 
precision is high enough and error rate in segmented 
images is very low. High precision in combination with 
low calculation complexity due to sum table application 

allowed us to perform segmentation of thousands of 
images with very successful results. 
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Fig. 8. Contour pixel distribution within maximum allowed 
distance 

 
Conclusions 

Adaptive segmentation algorithm was proposed, 
implemented and experimentally tested. The algorithm is 
suitable for image segmentation of integrated circuits 
layers under varying contrast and lighting conditions and 
varying IC sample quality. Our proposed adaptive 
segmentation algorithm gives standard deviation 5 times 
smaller than ordinary bilevel segmentation algorithm. The 
algorithm was optimized for computation speed which in 
combination with high segmentation precision makes it 
suitable for practical applications.  

 
References 

1. Acharya T., Ray A.K. Image Processing Principles and 
Applications. – Wiley–Interscience, 2005. 

2. Paulinas M., Miniotas D., Meilūnas M., Ušinskas A. An 
Algorithm for Segmentation of Blood Vessels in Images // 
Electronics and Electrical Engineering. – Kaunas: 
Technologija, 2008. – No. 3(83). – P. 25–28. 

3. Otsu N. A Threshold Selection Method From Gray Level 
Histograms // IEEE Transaction on System, Man, and Cyber, 
1979. – Vol. 9. – P. 62–66. 

4. Kapur J. N., Sahoo P. K., Wong A. K. C. A New Method 
of Gray Level Picture Thresholding Using the Entropy of the 
Histogram // Computer Vision, Graphics & Image 
Processing, 1985. – Vol. 29. – P. 273–285. 

5. Brink A. D., Pendcock N. E. Minimum Cross–Entropy 
Threshold Selection // Pattern Recognition. – 1996. – Vol. 29. 
– P. 179–188. 

6. Abutaleb A. S. Automatic Thresholding of Gray Level 
Pictures Using Two–Dimensional Entropy // Computer 
Vision, Graphics & Image Processing, 1989. – Vol. 47. – P. 
22–32. 

7. Masalskis G., Navickas R. Reverse Engineering of CMOS 
Integrated Circuits // Electronics and Electrical Engineering. 
– Kaunas: Technologija, 2008. – No. 8(88). – P. 25–28. 

8. Yanowitz S. D., Bruckstein A. M. A new method for image 
segmentation // in Proc. 9th Int. Conf. on Pattern Recognition, 
1988. – Vol. 1. – P. 270–275. 

9. Feigin M., Sochen N. Segmentation and Denoising via an 
Adaptive Threshold Mumford–Shah–like Functional // 



138 
 

Proceedings of the 17th International Conference on Pattern 
Recognition, 2004. – Vol. 2. – P. 98–101. 

10. Sun–Gu Sun, Dong–Min Kwak, Won Bum Jang, Do–Jong 
Kim. Small Target Detection Using Center–Surround 
Difference with Locally Adaptive Threshold // Proceedings of 
the 4th International Symposium on Image and Signal 
Processing and Analysis, 2005. – P. 402–407. 

11. Blayvas I., Bruckstein A., Kimmel R. Efficient computation 
of adaptive threshold surfaces for image binarization // 

Computer Vision and Pattern Recognition, 2001. – Vol. 1. – 
P. I–737–I–742. 

12. Tabbone S., Wendling L. Binarization of color images from 
an adaptation of possibilistic c–means algorithm // 
Proceedings of the 17th International Conference on Pattern 
Recognition, 2004. – Vol. 1. – P. 704–707. 

13. Lewis J. P. Fast Normalized Cross–Correlation. – 1995. 
Online: www.idiom.com/~zilla/Work/nvisionInterface/nip.pdf.  

 
Received 2010 06 24 

 
G. Masalskis, R. Navickas. Time-Efficient Adaptive Segmentation Algorithm forIC Layers Images // Electronics and Electrical 
Engineering. – Kaunas: Technologija, 2010. – No. 10(106). – P. 133–138. 

In this paper we introduce adaptive threshold algorithm for grayscale images which substantially enhances object extraction 
precision while maintaining robust calculation performance even for very large images. The algorithm was developed for feature 
analysis in low quality integrated circuit images obtained using optical microscopy equipment. Our proposed adaptive segmentation 
algorithm gives standard deviation 5 times smaller than ordinary bi-level segmentation algorithm when comparing segmented object 
contour differences to manually segmented image. This technique has been applied in industry. Ill. 8, bibl. 13, tabl. 1 (in English; 
abstracts in English and Lithuanian). 
 
 
G. Masalskis, R. Navickas. Spartus adaptyvaus segmentavimo algoritmas integrinių grandynų vaizdams // Elektronika ir 
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 10(106). – P. 133–138. 
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