
51

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2011. No. 1(107)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Tuning Fuzzy Perceptron using Parallelized Evolutionary Algorithms

Gh. Radu, I. Balan, I. Ungurean
Electrical Engineering and Computer Science Faculty, “Stefan cel Mare” University of Suceava,
Universitatii str. 13, 720229 Suceava, Romania, phone: +40 723 604 084, e-mail: gh.radu@gmail.com

Introduction

Dumitrescu [1–5] proposed two fuzzy training
procedures (Fuzzy Perceptron and the Fuzzy Relaxation).
In [3] some evolutionary algorithms for tuning these
training procedures are given. The aim of this paper is to
review the approach from [3] and to give some parallelized
algorithms concerning this approach, using the processing
capabilities of a high performance processor cluster.

The paper is structured in three main sections. The
first section presents the two training procedures. The
second one is a short presentation of our approach on
evolutionary algorithms. In the third section the results
obtained by running the parallel algorithms are presented.
Conclusions are drawn in the final section.

Two fuzzy training procedures

Problem: find a separation vector for fuzzy classes A1, A2.
Solution: Fuzzy Perceptron Algorithm.
Minimize distance of misclassified points to the
(separation) hyperplane

() 0: =zvH T . (1)

Criterion function

() ()()
()

∑ ∑
= ∈

−=
2

1i vEz

T
i

i

zvzAvJ , (2)

where

() () }{ 5.0,0| ><= zAzvzvE j
T

j , j=1,2. (3)

Optimization problem: minimize () 1, +∈ sRvvJ .

Modifications: Consider a training sequence ()nz ,

obtained by considering cyclically the vectors pzzz ,..., 21 .
At the k-th step of the algorithm, consider only one
training vector. Then, the Fuzzy Perceptron Training rule
is

() () ()1 , 0.5 0

, .

Tk k k k k k
i ik

k

v cA z z ifA z and v z
v

v otherwise

+


+ > ≤= 



. (4)

Remark: We have considered points on the separation
hyperplane that as misclassified (i.e. condition 0<kkT zv
becomes 0≤kkT zv).

Now, for a better classification, a stronger separation
condition will be considered

,bzvT ≥ b>0. (5)

We can define the criterion function as the sum of
squared distances with respect to the fuzzy training classes
of the misclassified points to the separating hyperplane

() ()()
()

∑ ∑
= ′∈

−
=′

2

1
2

2
2)(

i vEz

T

i
i z

bzvzAvJ , (6)

where vvv T=2 and

() (){ } 2,1,5.0,| =><=′ jzAbzvzvE j
T

j . (7)

We will make the following assumptions: consider at
the step k only the sample kz ; consider 0<c<2 and a
correction is also made for a sample kz for which

bkz
Tkv =




 . (8)

Thus the correction rule becomes:

() ()

() ()

2
,

2

1

0.5,

, .

Tk kb v z
k k kv c A z zi

kz
kv Tk k kif v z b and A zi

kv otherwise


−

  +    

+ = 
 ≤ >






 (9)

The iterative procedure which uses this correction
rule is called Fuzzy Relaxation Training Algorithm.

52

Evolutionary algorithms for tuning training procedures

The components of the evolutionary algorithms:
a) Representation and initialization. A chromosome

corresponds to a solution (weight or separation) vector v

1 2 1(, ,...,) ,j j jj
sv v v v + (10)

where each gene j
iv of a chromosome is a real number.

Besides the 1+s genes of a chromozome, another
one will be added, b; this coresponds to the 'H
hyperplane’s margin from the Fuzzy Relaxation Training
Algorithm. Thus the real codification of the chromosome
is

.),,...,,(121 bvvv j
s

jj
+ (11)

b) Fitness function. Since genetic algorithms are
designed to maximize functions, we will consider the
fitness function f defined as () ()vJMaxvf −=
(or () ()vJMaxvf ′−= for Fuzzy Relaxation Training
Algorithm), where Max is a constant used to ensure
that () vvf ∀≥ ,0 . Remark: Maximizing f⇒ minimizing
J. Fitness of the chromosome v is () ()vJveval = .

c) Selection. For selecting the parents, two types of
selection are implemented:

- proportional selection, where the probability of a
chromosome iv is

∑
∈

=

)(
)(

)(

tPv

j

i
i

j
vf

vfp , (12)

- tournament selection, two versions: binary
tournament and q-tournament, where q is an integer
number between 6 and 10.

Survivor selection is an elitist selection: all parents
and offspring compete for becoming members of a new
generation (evolution-based strategy).

We will take two generational models:
- steady-state model: in each generation an old

individual is replaced with a new one,
- custom model: allows the combination of different

types of variation operators and selection strategies.
d) Mutation. Consider 2 options:
- mutate a single gene of selected chromosome; a

normal perturbation is useful (uniform repartition),
- mutate each gene of selected chromosome.
In both cases the creep mutation is used, the gene, or

genes, being “altered” by adding a constant quantity. The
initial value of the mutation constant is 0.5.

e) Recombination. Consider 2 options:
- from the pair of parents (a, b), we obtain two

offspring, c and d, by the following formulas:

(1) , 1, , 1,
(1) , 1, , 1,

i i i i i

i i i i i

c a b i s
d a b i s

α α
α α

= + − = +
 = − + = +





 (13)

where ia is a random number with uniform distribution on

[]0, 1 .
- from the pair of parents (a,b), we obtain one

offspring, c, by the same formula.

Parallelizing evolutionary algorithms

 The evolutionary algorithms used for solving real
problems consume a large amount of resources, a fact that
prolongs the time needed for obtaining the results.
 For testing the evolutionary training algorithms, we
used a parallelized version of the algorithms by using the
OpenMPI library. The parallelization of the algorithms was
made on its data; the population is equally shared between
the MPI processes that run simultaneously. The algorithm
has been implemented in two different versions. In the first
version, the population is actualized in each MPI process,
at each step each process does the recombinations and
mutations using chromosomes from all the population. In
the second version, each MPI process has a diffrent
populaton than the other processes, each MPI process does
the recombinations and mutation using chromosomes from
the local population. The tests have been conducted on the
RedPOWER HPC cluster within the high performance
computing laboratory from „Stefan cel Mare“ University
of Suceava. This cluster is made of 28 nods and each node
is made by 2 Xeon Quad Core E5345 80W
2.33GHz/1333MHz/8MB L2 processors. The
communication is done by 2 Gigabit networks, one used
for administration purposes and the other for intensive
calculus. Each node can deploy 8 MPI proceses (2
processors * 4 cores = 8 cores) at a time [5].

 Fig. 1. The algorithm’s parallel execution mode is shown

Fig. 2. Obtained results

The results shown in Fig. 2 were obtained by running
the algorithm with the Pima Indians Diabetes Data Set [4],
a set composed by 8 attributes where the identifier of the
class has a number of 768 forms. In order to obtain the
corresponding fuzzy training sets we used Generalized
Fuzzy n-Means (GFNM) Algorithm [2] setting n=2. To be
able to use the advantages provided by the parallel

53

architectures we need a quite large volume of data,
therefore the time needed for communication between the
nodes is insignificant against the time needed for
processing the data. In order to prove the efficiency of
using a multi-processor architecture, we have used a
population of 12800 chromosomes that will evolve in
several generations. We can notice in Fig. 1 how the
processing time is decreasing with the increase of the
number of cores, up to a certain limit, when the time is

starting to increase. This increase is especially determined
by the increased number of communications between the
nodes and decreased volume of data for each core. The
cores are than, not used to their maximum capacity but
waiting for the communication.

Also from Fig. 1, assuming that certain delays due to
different reasons are neglected, we can state that he
difference between the two evolutions represents the time
needed for communication.

Table 1. The results obtained for different versions of evolutionary algorithms

GA type CA2Q* S** CA1B***
Nr. Steps Execution time (s) Steps Execution time (s) Steps Execution time (s)
1 78 12,551414 31 132,86864 69 11,919009
2 78 12,223929 29 126,359432 62 10,776089
3 70 10,617825 29 131,983591 74 13,499302
4 62 9,371246 31 134,68343 72 13,633883
5 69 10,438041 31 133,769158 64 11,133868

Avg 71,4 11,040491 30,2 131,93285 68,2 12,19243
Best 62 9,371246 29 126,359432 62 10,776089

Note: * custom evolutionary algorithm with mutations on all genes, recombinations 2 parents⇒ 2 children, 6-tournament.
** steady-state generational model.
*** custom evolutionary algorithm with mutations on all genes, recombinations 2 parents⇒ 1 child, binary selection.

In Table 1 the results obtained by running the
different versions of evolutionary algorithms on the same
data set (Prima Indians Diabetes Data Set) are shown, but
having at our disposal a population of 100 chromosomes
and a sequential structure. The running execution times in
CA2Q and CA1B cases are close to the executions times of
the algorithm with 12800 chromosomes on 128 cores. The
CA2Q version consists in running the algorithm when all
mutations affect all genes of the chromosomes composing
the population, thus the recombinations being made allows
the obtaining of two offspring from two parents, and the
selection is of tournament type, therefore six by six
chromosomes are faced with each other, in random order,
out of which only one is chosen, the one that survives. In
the CA1B case, compared to the first version of
evolutionary algorithm, the recombinations determine the
obtaining of only one offspring from 2 parent
chromosomes, while the selection is binary, therefore 2 by
2 chromosomes are faced with each other, taking one
chromosome from the population and the other random
generated from the same population, the best of them will
survive.

In the case of the S version we deal with a steady
evolutionary model. Therefore, in this case, we deal first
with some recombinations of each of the population’s
chromosomes and a chromosome randomly generated, and
then the obtained chromosome will be mutated, the last
obtained chromosome will replace the least satisfying
chromosome. We can see the number of generations
needed for attaining the desired result for each different
configuration. The steady model needs an average of only
30 steps, but the downside of this algorithm is the quite big
execution time, while the other two (custom) versions,
even if the number of generations to be traveled is much
bigger, the executions time is quite short. We can notice
this in Table 2, presented below. By the number of steps
needed for touching the desired result we mean, basicaly,

the number of generations that the evolution travels in
order to obtain the final result.

Table 2. Number of steps on different nodes

No. of nodes 1 2 4 8 16
No. of steps 70 64 52 52 51

Conclusions

The execution times, as well as the number of steps
needed for obtaining the final result have different values,
from one execution to the other, because when dealing
with these types of algorithms with evolutionary
techniques the random process is of significant importance.
That’s why, significant for the present paper is the average
value of the obtained results, while the Best value shows
the results that can be obtained only in idealistic
conditions. By paralelizing the evolutionary algorithms,
besides the gain in the execution time area, we can also
register some gainings in the number of steps required for
touching the desired result.

References

1. Dumitrescu D. Fuzzy Training Procedures I // Fuzzy Sets

and Systems. – Elsevier Science Publishers B.V., 1993. –
Vol. 56 – P.155–169.

2. Dumitrescu D., Lazzerini B., Jain L. C. Fuzzy Sets and
Their Application to Clustering and Training. – USA: CRC
Press, 2000. – 622 p.

3. Radu Gh. Tuning Fuzzy Perceptron Using Evolutionary
Algorithms // Proceedings of “Communication 2004”
International Conference. – Bucharest, 2004. – Vol. 1. – P.
303-308.

4. Sigillito V. UCI Machine Learning Repository. - Research
Center, RMI Group Leader, Applied Physics Laboratory, The
Johns Hopkins University. Online:
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

54

5. Komornicki A., Mullen-Schultz G., Landon D.
Roadrunner: Hardware and Software Overview. – USA: IBM
Redbooks, 2009. – 50 p.

Received 2010 02 15

Gh. Radu, I. Balan, I. Ungurean. Tuning Fuzzy Perceptron using Parallelized Evolutionary Algorithms // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2011. – No. 1(107). – P. 51–54.

Evolutionary computation can be used as independent instrument to establish the neural network weights. We assume that the
network architecture is known. Some evolutionary algorithms as training procedures of fuzzy perceptron have been proposed before.
In this paper, we presented a new hybridization between evolutionary algorithms (used as training procedures of fuzzy perceptron) and
parallel algorithms. Using a high performance processor cluster with 28 nodes we will try to get better results in much smaller intervals
of time. The kernels used to solve the problem are of the same type, they are eight on each node and each of them is working on the
same frequency. The computational results show the validity of new approach in terms runtime, accuracy and flexibility. Ill. 2, bibl. 5,
tabl. 2 (in English; abstracts in English and Lithuanian).

Gh. Radu, I. Balan, I. Ungurean. Lygiagretaus atsinaujinančio algoritmo taikymas neraiškiuosiuose perceptrono tipo dirbtinio
intelekto neuroniniuose tinkluose // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 1(107). – P. 51–54.

Neuroninių tinklų įverčiams nustatyti gali būti taikomi atsinaujinatys skaičiavimai. Keletas atsinaujinančių algoritmų jau buvo
pateikti ir pasiūlyti anksčiau. Laikoma, kad tinklo struktūra yra žinoma. Siūloma nauja sąsaja tarp atsinaujinančiųjų ir lygiagrečiųjų
algoritmų. Trumpesniuose laiko intervaluose, taikant labai našius procesorius su dvidešimt aštuoniais nodais, siekiama gauti geresnius
rezultatus. Procesoriuose naudojami tokie pat ir to paties taktinio dažnio branduoliai. Gauti rezultatai rodo metodo lankstumą ir
tikslumą. Il. 2, bibl. 5, lent. 2 (anglų kalba; santraukos anglų ir lietuvių k.).

	SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
	T 120

