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Introduction 
 

Dumitrescu [1–5] proposed two fuzzy training 
procedures (Fuzzy Perceptron and the Fuzzy Relaxation). 
In [3] some evolutionary algorithms for tuning these 
training procedures are given. The aim of this paper is to 
review the approach from [3] and to give some parallelized 
algorithms concerning this approach, using the processing 
capabilities of a high performance processor cluster. 

The paper is structured in three main sections. The 
first section presents the two training procedures. The 
second one is a short presentation of our approach on 
evolutionary algorithms. In the third section the results 
obtained by running the parallel algorithms are presented. 
Conclusions are drawn in the final section. 
 
Two fuzzy training procedures 
  
Problem: find a separation vector for fuzzy classes A1, A2. 
Solution: Fuzzy Perceptron Algorithm. 
Minimize distance of misclassified points to the 
(separation) hyperplane 
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where 
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Optimization problem: minimize ( ) 1, +∈ sRvvJ  . 

Modifications: Consider a training sequence ( )nz , 

obtained by considering cyclically the vectors pzzz ,..., 21 . 
At the k-th step of the algorithm, consider only one 
training vector. Then, the Fuzzy Perceptron Training rule 
is 
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Remark: We have considered points on the separation 
hyperplane that as misclassified (i.e. condition 0<kkT zv  
becomes 0≤kkT zv ). 

Now, for a better classification, a stronger separation 
condition will be considered 

 

,bzvT ≥ b>0.                                   (5)  
 

We can define the criterion function as the sum of 
squared distances with respect to the fuzzy training classes 
of the misclassified points to the separating hyperplane 
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where vvv T=2 and  
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We will make the following assumptions: consider at 
the step k only the sample kz ; consider 0<c<2 and a 
correction is also made for a sample kz  for which  
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Thus the correction rule becomes: 
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The iterative procedure which uses this correction 
rule is called Fuzzy Relaxation Training Algorithm. 
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Evolutionary algorithms for tuning training procedures 
 

The components of the evolutionary algorithms: 
a) Representation and initialization. A chromosome 

corresponds to a solution (weight or separation) vector v 
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where each gene j
iv of a chromosome is a real number. 

Besides the 1+s  genes of a chromozome, another 
one will be added, b; this coresponds to the 'H  
hyperplane’s margin from the Fuzzy Relaxation Training 
Algorithm. Thus the real codification of the chromosome 
is 
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b) Fitness function. Since genetic algorithms are 
designed to maximize functions, we will consider the 
fitness function f defined as ( ) ( )vJMaxvf −=  
(or ( ) ( )vJMaxvf ′−=  for Fuzzy Relaxation Training 
Algorithm), where Max is a constant used to ensure 
that ( ) vvf ∀≥ ,0 . Remark: Maximizing f⇒ minimizing 
J. Fitness of the chromosome v is ( ) ( )vJveval = . 

c) Selection. For selecting the parents, two types of 
selection are implemented: 

- proportional selection, where the probability of a 
chromosome iv is  
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- tournament selection, two versions: binary 
tournament and q-tournament, where q is an integer 
number between 6 and 10. 

Survivor selection is an elitist selection: all parents 
and offspring compete for becoming members of a new 
generation (evolution-based strategy). 

We will take two generational models: 
- steady-state model: in each generation an old 

individual is replaced with a new one,  
- custom model: allows the combination of different 

types of variation operators and selection strategies. 
d) Mutation. Consider 2 options: 
- mutate a single gene of selected chromosome; a 

normal perturbation is useful (uniform repartition), 
- mutate each gene of selected chromosome. 
In both cases the creep mutation is used, the gene, or 

genes, being “altered” by adding a constant quantity. The 
initial value of the mutation constant is 0.5. 

e) Recombination. Consider 2 options: 
- from the pair of parents (a, b), we obtain two 

offspring,  c and d, by the following formulas:  
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where ia is a random number with uniform distribution on 

[ ]0, 1 . 
- from the pair of parents (a,b), we obtain one 

offspring, c, by the same formula. 
 

Parallelizing evolutionary algorithms 
 

         The evolutionary algorithms used for solving real 
problems consume a large amount of resources, a fact that 
prolongs the time needed for obtaining the results. 
         For testing the evolutionary training algorithms, we 
used a parallelized version of the algorithms by using the 
OpenMPI library. The parallelization of the algorithms was 
made on its data; the population is equally shared between 
the MPI processes that run simultaneously. The algorithm 
has been implemented in two different versions. In the first 
version, the population is actualized in each MPI process, 
at each step each process does the recombinations and 
mutations using chromosomes from all the population. In 
the second version, each MPI process has a diffrent 
populaton than the other processes, each MPI process does 
the recombinations and mutation using chromosomes from 
the local population. The tests have been conducted on the 
RedPOWER HPC cluster within the high performance 
computing laboratory from „Stefan cel Mare“ University 
of Suceava. This cluster is made of 28 nods and each node 
is made by 2 Xeon Quad Core E5345 80W 
2.33GHz/1333MHz/8MB L2 processors. The 
communication is done by 2 Gigabit networks, one used 
for administration purposes and the other for intensive 
calculus. Each node can deploy 8 MPI proceses (2 
processors * 4 cores = 8 cores) at a time [5]. 
 

 
 Fig. 1. The algorithm’s parallel execution mode is shown 
     

 
Fig. 2. Obtained results 
 

The results shown in Fig. 2 were obtained by running 
the algorithm with the Pima Indians Diabetes Data Set [4], 
a set composed by 8 attributes where the identifier of the 
class has a number of 768 forms. In order to obtain the 
corresponding fuzzy training sets we used Generalized 
Fuzzy n-Means (GFNM) Algorithm [2] setting n=2. To be 
able to use the advantages provided by the parallel 
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architectures we need a quite large volume of data, 
therefore the time needed for communication between the 
nodes is insignificant against the time needed for 
processing the data. In order to prove the efficiency of 
using a multi-processor architecture, we have used a 
population of 12800 chromosomes that will evolve in 
several generations. We can notice in Fig. 1 how the 
processing time is decreasing with the increase of the 
number of cores, up to a certain limit, when the time is 

starting to increase. This increase is especially determined 
by the increased number of communications between the 
nodes and decreased volume of data for each core. The 
cores are than, not used to their maximum capacity but 
waiting for the communication. 

Also from Fig. 1, assuming that certain delays due to 
different reasons are neglected, we can state that he 
difference between the two evolutions represents the time 
needed for communication.

 
Table 1. The results obtained for different versions of evolutionary algorithms 

GA type CA2Q* S** CA1B*** 
Nr. Steps Execution time (s) Steps Execution time (s) Steps Execution time (s) 
1 78 12,551414 31 132,86864 69 11,919009 
2 78 12,223929 29 126,359432 62 10,776089 
3 70 10,617825 29 131,983591 74 13,499302 
4 62 9,371246 31 134,68343 72 13,633883 
5 69 10,438041 31 133,769158 64 11,133868 

Avg 71,4 11,040491 30,2 131,93285 68,2 12,19243 
Best 62 9,371246 29 126,359432 62 10,776089 

Note: *     custom evolutionary algorithm with mutations on all genes, recombinations 2 parents⇒ 2 children, 6-tournament.  
**   steady-state generational model. 
*** custom evolutionary algorithm with mutations on all genes, recombinations 2 parents⇒ 1 child, binary selection. 
 

In Table 1 the results obtained by running the 
different versions of evolutionary algorithms on the same 
data set (Prima Indians Diabetes Data Set) are shown, but 
having at our disposal a population of 100 chromosomes 
and a sequential structure. The running execution times in 
CA2Q and CA1B cases are close to the executions times of 
the algorithm with 12800 chromosomes on 128 cores. The 
CA2Q version consists in running the algorithm when all 
mutations affect all genes of the chromosomes composing 
the population, thus the recombinations being made allows 
the obtaining of two offspring from two parents, and the 
selection is of tournament type, therefore six by six 
chromosomes are faced with each other, in random order, 
out of which only one is chosen, the one that survives.  In 
the CA1B case, compared to the first version of 
evolutionary algorithm, the recombinations determine the 
obtaining of only one offspring from 2 parent 
chromosomes, while the selection is binary, therefore 2 by 
2 chromosomes are faced with each other, taking one 
chromosome from the population and the other random 
generated from the same population, the best of them will 
survive. 

In the case of the S version we deal with a steady 
evolutionary model. Therefore, in this case, we deal first 
with some recombinations of each of the population’s 
chromosomes and a chromosome randomly generated, and 
then the obtained chromosome will be mutated, the last 
obtained chromosome will replace the least satisfying 
chromosome. We can see the number of generations 
needed for attaining the desired result for each different 
configuration. The steady model needs an average of only 
30 steps, but the downside of this algorithm is the quite big 
execution time, while the other two (custom) versions, 
even if the number of generations to be traveled is much 
bigger, the executions time is quite short. We can notice 
this in Table 2, presented below. By the number of steps 
needed for touching the desired result we mean, basicaly, 

the number of generations that the evolution travels in 
order to obtain the final result. 
 
Table 2. Number of steps on different nodes 

No. of  nodes 1 2 4 8 16 
No. of  steps 70 64 52 52 51 

 
Conclusions 
 

The execution times, as well as the number of steps 
needed for obtaining the final result have different values, 
from one execution to the other, because when dealing 
with these types of algorithms with evolutionary 
techniques the random process is of significant importance. 
That’s why, significant for the present paper is the average 
value of the obtained results, while the Best value shows 
the results that can be obtained only in idealistic 
conditions. By paralelizing the evolutionary algorithms, 
besides the gain in the execution time area, we can also 
register some gainings in the number of steps required for 
touching the desired result. 
 
References 
 
1. Dumitrescu D. Fuzzy Training Procedures I // Fuzzy Sets 

and Systems. – Elsevier Science Publishers B.V., 1993. – 
Vol. 56 – P.155–169. 

2. Dumitrescu D., Lazzerini B., Jain L. C.  Fuzzy Sets and 
Their Application to Clustering and Training. – USA: CRC 
Press, 2000. – 622 p.  

3. Radu Gh. Tuning Fuzzy Perceptron Using Evolutionary 
Algorithms // Proceedings of “Communication 2004” 
International Conference. – Bucharest, 2004. – Vol. 1. – P. 
303-308. 

4. Sigillito V. UCI Machine Learning Repository. - Research 
Center, RMI Group Leader, Applied Physics Laboratory, The 
Johns Hopkins University. Online:  
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes 



54 
 

5. Komornicki A., Mullen-Schultz G., Landon D. 
Roadrunner: Hardware and Software Overview. – USA: IBM 
Redbooks, 2009. – 50 p. 

 

Received 2010 02 15 
 
Gh. Radu, I. Balan, I. Ungurean. Tuning Fuzzy Perceptron using Parallelized Evolutionary Algorithms // Electronics and 
Electrical Engineering. – Kaunas: Technologija, 2011. – No. 1(107). – P. 51–54. 

Evolutionary computation can be used as independent instrument to establish the neural network weights. We assume that the 
network architecture is known. Some evolutionary algorithms as training procedures of fuzzy perceptron have been proposed before. 
In this paper, we presented a new hybridization between evolutionary algorithms (used as training procedures of fuzzy perceptron) and 
parallel algorithms.  Using a high performance processor cluster with 28 nodes we will try to get better results in much smaller intervals 
of time. The kernels used to solve the problem are of the same type, they are eight on each node and each of them is working on the 
same frequency. The computational results show the validity of new approach in terms runtime, accuracy and flexibility. Ill. 2, bibl. 5, 
tabl. 2 (in English; abstracts in English and Lithuanian). 
 
 
Gh. Radu, I. Balan, I. Ungurean. Lygiagretaus atsinaujinančio algoritmo taikymas neraiškiuosiuose perceptrono tipo dirbtinio 
intelekto neuroniniuose tinkluose // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 1(107). – P. 51–54. 

Neuroninių tinklų įverčiams nustatyti gali būti taikomi atsinaujinatys skaičiavimai. Keletas atsinaujinančių algoritmų jau buvo 
pateikti ir pasiūlyti anksčiau. Laikoma, kad tinklo struktūra yra žinoma. Siūloma nauja sąsaja tarp atsinaujinančiųjų ir lygiagrečiųjų 
algoritmų. Trumpesniuose laiko intervaluose, taikant labai našius procesorius su dvidešimt aštuoniais nodais, siekiama gauti geresnius 
rezultatus. Procesoriuose naudojami tokie pat ir to paties taktinio dažnio branduoliai. Gauti rezultatai rodo metodo lankstumą ir 
tikslumą. Il. 2, bibl. 5, lent. 2 (anglų kalba; santraukos anglų ir lietuvių k.). 
 
 
 


	SYSTEM  ENGINEERING,  COMPUTER  TECHNOLOGY
	T 120

