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1Abstract—Interesting type of the second-order electronically
controllable multiphase oscillator is introduced in this paper.
Modified voltage differencing current conveyor, so-called z-
copy controlled gain voltage differencing current conveyor
(ZC-CG-VDCC), offers interesting features for synthesis of this
type of multiphase oscillator. Available controllable parameters
of the ZC-CG-VDCC (intrinsic resistance, transconductance
and current gain) are fully utilized for independent adjusting of
oscillation condition and oscillation frequency. Specific
matching condition allows linear control of oscillation
frequency that is not so typical in such simple types of
oscillators. Available phase shifts are 45, 90, 135 and 180
degree. Simulation results based on CMOS model of active
element confirms intentions of the proposal in the bandwidth of
several MHz.

Index Terms—Electronic control, current-gain, intrinsic
resistance, second-order multiphase oscillators,
transconductance, voltage differencing current conveyor, z-
copy.

I. INTRODUCTION

Applications of more than one type of controllable
parameter in frame of one active device have increasing
attention of many researchers. Several interesting solutions
of active element with these features were reported in
literature. For example, Minaei et al. [1], Marcellis et al. [2],
Kumngern et al. [3] and others presented interesting
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conceptions. Extended version of the current conveyor
introduced in [1] allows adjustable current gain (B) between
x and z terminals and adjustable intrinsic resistance (Rx) of
the current input terminal x. Modified current conveyor
introduced in [2] disposes controllable features of current
gain between x and z terminals and voltage gain between y
and x terminals. Combination of Rx and B control is
available in interesting version of translinear current
conveyor [3]. Typical examples of active elements with two-
parameter control are also modifications of the current
differencing transconductance amplifier (CDTA) [4], [5].
DC bias currents are also used for control of Rx and
transconductance gm [6], [7]. Transconductance section [4],
[8] combined with current conveyor of second generation
[4], [9], [10] are common subparts in so-called current
conveyor transconductance amplifier (CCTA) [4], [11],
where independent Rx and gm control is also possible [12].
Some modifications of CCTA provide also adjustable
current gain control [13].

Active element presented in this paper and used in
proposed application offers possibility of control of three
independent parameters. In case of oscillator, it is fully
utilized for control of oscillation condition and linear tuning
of oscillation frequency.

The reasons for utilization of active elements employing
several types of electronic control came from requirements
for comfortable electronic control in applications. The
important applications in the field of signal generation are
oscillators. Therefore, we provided detailed study of several
oscillator solutions and found following drawbacks
concerning mainly lack of electronically controllable
features of proposed circuits:

1. too many passive elements (for example [14]–[17]),
2. condition of oscillation given by equality of capacitors
only (for example [18]–[22]),
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TABLE 1. SOME OF RECENTLY REPORTED SOLUTIONS OF SIMPLE SECOND-ORDER MULTIPHASE OSCILLATORS.
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[6] 2012 2 2 CCCDTA Yes Yes No Yes (gm) Yes (gm) DC I k/2 current

[31] 2011 2 5 or
6 DO-CIBA Yes Yes No No (R) No (R) PE k/2 voltage

[32] 2013 2 3 VDIBA No No Yes Yes (gm) Yes (gm) DC I k/2 voltage

[33] in
press 3 5 DO-CG-

CFBA Yes Yes No Yes (B) Yes (B) DC V k/2 voltage

[34] 2014 2 5
CG-

CFDOBA,
CG-BCVA

Yes Yes No Yes (B) Yes (A) DC V k/2 voltage

[35] 2012 1 3 VDTA Yes Yes No Yes (gm) No (R) DC I k/2 current
[36] 2013 1 5 VDTA Yes Yes No Yes (gm) No (R) DC I k/2 voltage

[37] 2012 2 6 CCII+.
ECCII- No Yes No No Yes (B) DC V k/4 voltage

[38]* 2013 2 3; 5 DO-VDBA,
FB-VDBA No Yes No; Yes Yes(gm); No Yes (gm) DC I k/4 voltage

proposed 1 4 ZC-CG-
VDCC Yes Yes No Yes (gm, Rx) Yes (B) DC I k/4 voltage

Notes: A – voltage gain; B – current gain; gm – transconductance; R – resistor value
* ref. [38] deals with two types of the oscillator with phase shift k/4

3. matching of two controllable parameters or values of
passive elements required in order to fulfill oscillation
condition, and tuning of oscillation frequency is required
simultaneously [18]–[22],
4. linear control of oscillation frequency is not possible
especially in simple solutions having minimal number of
active elements [23]–[28],
5. none of discussed simple second-order solution allow
four-phase outputs with /4 shift i.e. 45, 90, 135, and 180
degree of phase shifts.
Of course, there are many multiphase solutions based on

cascades (chains) of lossy blocks in one loop (for example
[29] and references cited therein) that allow various phase
shifts, but circuit realization is very extensive (many active
and passive elements) and tunability complicated in some
cases [30]. Therefore, we focused our attention on simple
(minimal number of active element) electronically adjustable
solutions. Despite of fact that several second-order
multiphase and tunable oscillators were introduced [6],
[31]–[36], any solution from them does not allow to realize
phase shift between produced signals different than /2.
Detailed comparison is shown in Table I. Our solution
produces phase shift /4 between generated signals. The
same feature is available in [37], [38], but discussed
solutions do not have capability of electronic control (or any
other method) of oscillation frequency or they do not have
independent control of oscillation frequency (element
suitable for frequency control influences oscillation
condition). Therefore, oscillator presented in this paper
provides significant advantages (electronic control of
oscillation frequency independently on oscillation condition
and minimal number of active elements) in comparison to
previous works that realizes phase shift in multiples of /4
[37], [38].

II. SECOND-ORDER MULTIPHASE OSCILLATOR USING Z-
COPY CONTROLLED-GAIN VOLTAGE DIFFERENCING

CURRENT CONVEYOR

Presented second-order multiphase oscillator utilizes
active element referred as z-copy controlled gain voltage
differencing current conveyor (ZC-CG-VDCC). Detailed
description of the active element and its parameters are
discussed in [39]. Therefore, only very brief introduction is
given here. ZC-CG-VDCC is multi-terminal mixed-mode
active device that provides three independent types of
controllable parameters (Rx, gm, B). These parameters are
adjustable by DC bias currents. Difference of voltages Vp

and Vn at high-impedance input terminals is transformed to
current Iz_TA by transconductance section (gm). The identical
copy is provided for auxiliary purposes (high-impedance
terminal zc_TA). Voltage at low-impedance current input
terminal x is directly given by intrinsic resistance RX and
Vz_TA. Current Ix = (Vx − Vz_TA)/Rx is amplified by adjustable
gain B to positive and negative output (high-impedance
terminals zp, zn). Symbol, including internal behavioral
model, is shown in Fig. 1. Outgoing current (arrow in
direction out of the device) is meant as positive. Inter-
terminal relations are also included in Fig. 1. Possible
CMOS implementation and its features are shown in [39].

Circuit structure of the multiphase voltage-mode oscillator
is given in Fig. 2. Here it is worth to note that the circuit can
also work in current-mode if the load resistances RL1 and RL2

are omitted. In this case current responses are taken from
terminals zp and zc_TA. Characteristic equation of the
oscillator in Fig. 2 has very favorable form

2 2 1

1 2 1 2
0,m

x x

gC C Bs s
R C C R C C


   (1)
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where condition of oscillation (CO) and frequency of
oscillation (FO) are:

2

1
,CB

C
 (2)

0
1 2

.m

x

g
R C C

  (3)

Fig. 1. Symbol and behavioral model of the ZC-CG-VDCC.

Fig. 2. ZC-CG-VDCC based second-order simple multiphase oscillator.

The relation between outputs VOUT2 and VOUT1 is
represented by following expression

2

1 2
.OUT x m

OUT x

V B R g
V B sC R





(4)

If CO (B = 1) is fulfilled and gm = 1/Rx, C1 = C2 = C, (4)
can be simplified to

2

1
1 ,OUT

OUT

V
j

V
  (5)

that gives

 2 12 exp / 4 .OUT OUTV j V (6)

Relation for VOUT4 and VOUT1 has a form

4 2
2

1 2
.OUT m

L
OUT x

V sC g
R B

V sC R B





(7)

Simplified relation (gm = 1/Rx, C1 = C2 = C, B = 1), valid
at FO, has a form:

4 2
2

1
,OUT L

L m
OUT x

V RR g j j
V R

    (8)

 4 2 1exp / 2 .OUT L m OUTV R g j V  (9)

Between VOUT3 and VOUT1 we achieve very simple relation
(for discussed simplification):

3 1
1

1
,OUT L

L m
OUT x

V R R g
V R

    (10)

 3 1 1exp .OUT L m OUTV R g j V (11)

Detailed evaluation of above noted relations shows that
phase shifts keep preserved during the tuning process if
considered conditions (gm = 1/Rx, C1 = C2 = C) are ensured.
However, as we can see, amplitudes of two of produced
signals (VOUT3, VOUT4) vary during the tuning process.
Oscillation frequency can be adjusted linearly by gm and Rx

simultaneously while their ratio is kept constant.

III. SIMULATION RESULTS

We used CMOS model of the ZC-CG-VDCC introduced
in [39] for verification and analysis of proposed circuit.
Controllability of discussed parameters (Rx, gm, B) of the
ZC-CG-VDCC CMOS model from [39] is documented in
Fig. 3. Ideal traces are determined from theoretical equations
for Rx, gm, and B in accordance with the CMOS model
specifications [39]. Adjusting of the DC bias current Iset_Rx

between 5.9 A and 80 A allows control of Rx in
approximate range from 4 k to 0.67 k. Transconductance
control is in case of this proposed oscillator sufficient from
250 S to 1500 S by Iset_gm between 9.7 A and 99 A.
Current gain control B is in range 0.4 to 4 (Iset_B from
100 A to 10 A).

a)

b)
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c)
Fig. 3. Typical dependences of controllable parameters of ZC-CG-VDCC
element [39] on DC bias control currents: a) Rx, b) gm, c) B.

The oscillator in Fig. 4 (including circuit for amplitude
stabilization) was designed with following parameters:
C1 = C2 = 30 pF, Rx = 2 k (Iset_Rx = 13.3 A), gm = 500 S
(Iset_gm = 22 A), B ≈ 1 (control current had to be varied in
range Iset_B ≈ 79 A–81 A). Supply voltage was  1 V.
Values of load resistance are RL1 = RL2 = 2 k. Ideal
oscillation frequency has value 2.654 MHz.

Ideal phase and amplitude relations based on analysis in
(4)–(11) for these initial parameters and discrete frequency
are given in Fig. 5. Dots at the ends of lines of the constant
vectors mean constant unchangeable positions (obvious at
single FO value). Nonlinear tuning process based on fixed
Rx and adjusted gm is possible. However, amplitude (VOUT3

and VOUT4) and also additional amplitude and phase changes
between VOUT1 and VOUT2 occur, see Fig. 6 for further
information, where dynamical output vectors in polar plot
are shown (arrows signalize trends of amplitude changes
with increasing gm from 100 S to 1 mS). Voltage VOUT1 has
always constant value. Simultaneous control of both
parameters (gm = 1/Rx) is the best choice for the operation of
proposed system. Figure 7 shows that VOUT2 keeps constant
for gm = 1/Rx control of FO. Amplitudes of VOUT1 and VOUT2

are not equal but their ratio keeps invariant in process of
tuning and levels are constant (dot at the end of line of the
vectors). Unfortunately, VOUT3 and VOUT4 are still dependent
on FO control.

Fig. 4. Simulated oscillator circuit including automatic gain control circuit
for amplitude stabilization.

VOUT1/VOUT1

VOUT2/VOUT1

VOUT3/VOUT1

VOUT4/VOUT1

45

90

135

180

225
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315

01 2

amplitude ratio [-]

phase [deg]

Fig. 5. Phase and amplitude relations between available outputs of ideal
oscillator (f0 = 2.65 MHz) in polar plot.

Fig. 6. Polar plot of output vector voltage relations for gm and FO
adjusting from 100 S to 1 mS (fixed Rx = 2 k).

Fig. 7. Polar plot of output vector voltage relations for control of FO by
gm = 1/Rx simultaneous adjusting from 100 S to 1 mS.

Value of FO, obtained from simulation, achieved
2.566 MHz. Simulation results are shown in Fig. 8, where
transient responses for all four outputs are available.
Simulated phase shifts were 44 degrees (VOUT1-VOUT2), 86
degrees (VOUT1-VOUT4), 181 degrees (VOUT1-VOUT3) and 139
degrees (VOUT2-VOUT4).

The FO control supposes simultaneous change of gm

and Rx. Theoretical range of FO control allows control in
between 1.327 MHz–7.960 MHz (gm = 1/Rx = <0.25; 1.5>
mS). Simulations provided adjusting from 1.331 MHz to
7.391 MHz. Corresponding results are in Fig. 9. Amplitudes
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of VOUT3 and VOUT4 still changes in accordance to discussed
theoretical relations (VOUT1 and VOUT2 are unchangeable if
equality gm = 1/Rx is ensured).
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Fig. 8. Transient responses of all available outputs.
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Fig. 10. Frequency spectrum of VOUT1 for selected oscillation frequencies.
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Fig. 11. Dependences of output levels on oscillation frequency.

Frequency spectrum of VOUT1 for four discrete frequencies
is shown in Fig. 10. Figure 11 shows dependence of output
levels on tuning process. It confirms theoretical relations
(4)–(15). Total harmonic distortion (THD) results obtained
at all available outputs are shown in Fig. 12 and reach
0.45 %–3.8 % (VOUT1: 0.45 %–1.48 %; VOUT2: 0.45 %–
2.28 %; VOUT3: 0.58 %–3.81 %; VOUT4: 1.17 %–3.15 %) in
whole range of oscillation frequency tuning. Last plot shows
power consumption of the oscillator that has very slight
dependence on tuning process (Fig. 13).
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Fig. 13. Dependence of power consumption on oscillation frequency.

IV. CONCLUSIONS

The proposed simple second-order sinusoidal oscillator
fulfils multiphase requirements (produces 45, 90, 135 and
180 degree phase shifts simultaneously) and can work also
as the quadrature type. The matching of two parameters is
required for linear electronic control of the oscillation
frequency. Nevertheless, this matching is easily accessible
by adjusting of both parameters (transconductance gm and
intrinsic resistance of the current input Rx). The third
parameter (current gain B) controls the condition of
oscillation. All parameters are controlled electronically.
Verification of tuning was provided from 1.331 to
7.391 MHz.
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