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Introduction 

 

A Proportional–Integral (P-I) controller is a generic 

control loop feedback mechanism, which is widely used in 

industrial control systems due to that its structure is 

simplex and it can almost ensure zero error in steady-state 

when its gains are properly tuned. A PI controller 

calculates an ‘error’ value as the difference between the 

desired set point and the measured output process variable. 

The conventional PI controller has fixed gains and is based 

on the mathematical model of the system being controlled. 

Moreover, a disadvantage of the conventional PI controller 

is that for optimum output quality and performance 

(overshoot, rise time and settling time), the controller gains 

must be tuned according to the nature of the system. 

Unfortunately, it has been quite difficult to tune the gains 

properly of PI controllers because many industrial plants 

are often burdened with problems such as high order, time 

delays and nonlinearities [1]. An alternative method for the 

speed control of a DC motor is based on fuzzy logic 

controller (FLC). While conventional controllers depend 

on the accuracy of the system model and parameters, FLCs 

use a different approach. Instead of using a system model, 

the operation of a FLC is based on heuristic knowledge 

and linguistic description [2]. The advantage of fuzzy 

control is that it can integrate the knowledge of 

anthropologists into the design process of controllers, 

without the need of the design process of controllers, 

without the need of accurate mathematical models [3]. 

However, building a FLC from a ground-up may not 

provide good results or sometime even a worse result than 

a conventional controller if there is not enough knowledge 

of the system. Therefore, the performance of a FLC can be 

improved by adjusting the rules, scaling coefficients and 

membership functions [4]. 

GA is a stochastic global adaptive search 

optimization technique based on the mechanisms of natural 

selection. In recent years, GA has been recognized as an 

effective and efficient technique to solve optimization 

problems compared with other optimization techniques [5]. 

A controller is decomposed into a set of parameters, which 

the GA attempts to optimize by using simulation based 

fitness evaluation of candidate controllers in the closed-

loop systems [6]. 

This study applies genetic PI control to design a fast-

response controller and improve traditional PI controllers 

with poorer response. The results of applying the genetic 

PI controller to the DC motor drive system have been 

compared to those obtained by the application of a fuzzy 

controller. The computer simulation results show that the 

genetic PI controller provides improved dynamic 

performance than the fuzzy controller. It is also observed 

that the genetic PI controller shows better transient 

performance when the system parameters are changed.  

 

Mathematical models of a separately excited dc motor 
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Fig. 1. Equivalent circuit diagram of a SEDM 

 

The equivalent circuit diagram of the separately 

excited DC motor (SEDM) is shown in Fig. 1. In such a 

DC motor, the field windings are separately excited from 

an external dc source [7]. Hence, the current in the field 

windings is independent of the current in the armature 

windings. The equations describing the dynamic behavior 

of the SEDM are given by the following equations. The 

voltage equations of DC motor is expressed in matrix 

form:  
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where Ra, La are motor armature resistance and inductance, 

Rf, Lf are motor field resistance and inductance, Va, Vf are 

armature and field coil voltages, ia, if are armature and field 

coil currents, ea is electromotive force (EMF) and P is the 

differential operator (d/dt) 
 

,a af f me k i   (2) 

 

where kaf is the armature-field mutual inductance and ωm is 

the rotor electrical speed in radian. 

Solving (1) yields the currents ia and if, respectively. 

The developed torque Te is 
 

.e af f aT k i i  (3) 

 

In the constant torque region, the speed of a SEDM 

could be varied from zero to rated speed mainly by varying 

armature voltage Va, and hence controlling armature 

current ia in (3). The ωm can be calculated using the 

mechanical equation expressed in (4) 
 

  ,m e L m m mP T T B J     (4) 

 

where Bm is the frictional coefficient and Jm is the moment 

of inertia of the rotor. 

It is learnt from (3) that for a given constant if, it is 

only required to control armature current ia in order to 

control the speed of the motor. The DC motor features 

under study are listed in Table 1. 
 

Table 1. Motor features 

Motor features 

Features  Values 

Power (P)  5 HP 

Maximum speed  1220 rpm 

Field and armature resistance  84.91 Ω-0.4832 Ω 

Field and armature inductance 

Field armature inductance 

 13.39 H-0.006763 H 

 0.7096 H 

Maximum current  16.2 A 

Friction coefficient (B)  0.007032 N.m.s 

Inertia (J)  0.2053 kg.m2 
 

Control techniques of SEDM  
 

A. Proportional-Integral (PI) Controller. In control 

engineering, a PI Controller is a feedback controller which 

drives the plant to be controlled with a weighted sum of the 

error and the integral of that value. It is certainly the most 

commonly used control algorithm in industry. The main 

reason is its relatively simple structure, which can be easily 

understood and implemented in practice [6]. PI controller 

can be represented by 
 

     
0

,
t

P ii t K e t K e t dt     (5) 

 

where i
*
(t) is the reference armature current required by the 

motor, Kp is the proportional gain, Kt is the integral gain 

and e(t) is the speed error signal between the desired and 

measured output speed. The speed error signal at t-th 

instant is given by 
 

   .e t t    (6) 
 

It can be noticed that the control signal depends on 

the present value of the error signal as well as its previous 

values. In the computer simulation of a PI controller, (5) 

becomes 

      t
iP teTKteKti 0

, (7) 

 

where T > 0 is the sampling period. 

B. Fuzzy Logic Controller. Fuzzy control is one of 

the useful control techniques to deal with uncertain and ill-

defined nonlinear systems. Control actions of the fuzzy 

controller are realized by running some linguistic rules, 

which also contribute to a significant interpretability of the 

controller [8]. The design of fuzzy controller generally 

includes three steps: fuzzification, inference engine and 

defuzzification [3]. These three steps are shown in Fig. 2. 

Fuzzification converts crisp input variables into fuzzy 

variables, inference engine library converts these linguistic 

values into fuzzy sets of fuzzy variables and finally 

defuzzification is used to convert fuzzy value into 

identifiable controlled variable for the controlled system 
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Fig. 2. Block diagram of a fuzzy controller 

 

The process of the controlling the speed of the SEDM 

is a two-input and single output system. The inputs and the 

output of the speed controller are: the difference of speed 

command ω
*
 and actual speed ω, i

*
(t) is the output of the 

speed controller, which is the reference armature current 

for the hysteresis current control. Thus, the speed error e(t) 

is taken as an input and the change of speed error de(t) as 

the other input. So, two inputs for every sampling instant 

are: 
 

    ,e t t    (8) 

      1 ,de t e t e t T    (9) 

 

where T is the sampling period, .(t) and .(t-1) are actual 

and previous time value, respectively. 
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Fig. 3. Fuzzy sets on the universe of discourse for (a) speed error 

e(t) (b) speed error change de(t) (c) reference current i*(t) 
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In this study, three fuzzy sets of N, ZE, P are chosen 

for e and de and five fuzzy sets of NB, N, ZE, P, PB are 

chosen for i
*
, reference current command. Input and output 

fuzzy sets are symmetrical triangle-type membership 

functions. The input and output membership functions of 

the PI fuzzy controller are shown in Fig. 3.a, 3.b and 3.c, 

respectively. 

The value of membership degree μ, for each fuzzy 

variable ranges between 0 and 1. The speed error, e, for the 

designed fuzzy speed controller is at the range from -0.05 

to 0.05. Yet, error change variable, de, is at the range from 

-1 to 1 and the range of the output i
*
, is set between -4 to 4. 

The key point for the fuzzy controller is the 

establishment of the knowledge and the rule base, because 

they are established according to the experience of expert 

system [2]. Fuzzy rules are a collection of linguistic 

statements that describe how the fuzzy inference system 

(FIS) should make a decision regarding classifying an 

input or controlling an output [9]. A rule is expressed with 

the form of if-then and in this study nine rules are included 

in the rule base. The control rule table is given in Table 2. 
 

Table 2. Rule base for fuzzy speed controller 

N ZE P

N

ZE

P

NB

N

ZE

N

ZE

P

ZE

P

PB

e

de
i*

 
Note: e and de are input variables. i* is output variable.  

 

According to the rule base given in Table 2, 

description of a rule in this study can be expressed in the 

following form: If error is positive (P) and error change is 

positive (P) then control signal is positive-big (PB). The 

overall drive system used in this article is composed of a 

speed controller (genetic PI and fuzzy PI), a hysteresis 

band current controller, a current limiter and a DC-DC 

converter. For a PI-type fuzzy controller, because of 

having scaling problems in fuzzying the integral of the 

error signal, in the literature applications, error and error 

change signals are used as controller inputs and in the 

output, by obtaining the change of the control signal, PI 

feature is provided to the fuzzy controller [10]. Fuzzy PI 

control system is shown in Fig. 4. 
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Fig. 4. Fuzzy PI control systems developed in this study 

 

In this control strategy, in addition to fuzzy speed 

controller, a hysteresis current controller is inserted into 

the system in order to improve the performance of DC 

motor drive. In a hysteresis current controller (HCC), 

switching patterns required for DC-DC converter circuit 

are generated by comparing the actual current being drawn 

by the motor with the reference current. A positive pulse is 

generated if the actual current is less than the reference 

armature current, whereas a negative pulse is produced if 

the actual current exceeds the reference current [11]. 

Developments in the output quality and performance 

(overshoot, rise time, and settling time) have been 

achieved by applying the both control strategy. In the 

defuzzification process where the output of the fuzzy sets 

is transferred into identifiable value, the weighted average 

method is used in (10) 
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where i
*
 is the crisp output of the fuzzy controller, ui is the 

i-th rule weight and (ui) is the membership value of the 

output membership function corresponding to the i-th 

control rule. 

 

Genetic algorithms 
 

The genetic algorithm is a stochastic global adaptive 

search optimization technique based on the mechanisms of 

natural selection. In recent years, GAs have been 

recognized as effective and efficient techniques to solve 

optimization problems compared with other optimization 

techniques because of not requiring to take objective 

function derivatives and can thus deal with discrete 

variables and non-continuous objective functions [5,12]. 

Basically, GAs consists of three main stages: Selection, 

Crossover and Mutation. Selection directs the search of 

GAs toward the best individual. In the process, strings with 

high fitness receive multiple copies in the next generation 

while strings with low fitness receive fewer copies or even 

none at all. Crossover can cause to exchange the property 

of any two chromosomes via random decision in the 

mating pool and provide a mechanism to product and 

match the desirable qualities through the crossover. 

Mutation is a form of global search where the genetic 

information of a chromosome is randomly altered [5]. The 

application of these three basic operations allows the 

creation of new individuals which may be better than their 

parents. This algorithm is repeated for many generations 

and finally stops when reaching individuals that represent 

the optimum solution to the problem [13]. 

A. Chromosome Structure and Evaluation Criterion. GAs 

begin to explore the search space by defining a population 

of strings or chromosomes. Hence, first of all, the 

controller parameters, which will be optimized, should be 

coded into a string-called chromosome. In classical GAs, 

binary numbers are mainly used [14]. However, in this 

study, real number coding method is chosen in order not to 

consider how many bits are necessary to accurately 

represent a coefficient and also to reduce the processing 

time. The appearance of a chromosome in the population is 

given in Fig. 5. The chromosome consists of two genes 

representing the controller parameters Kp and Ki, 

respectively. The solution space for the proportional gain 

Kp
*
 is set to the values between 0-40 A/rad/s and the 

solution space for the integral gain, Ki
*
 is at the range 0-10 

A/rad. 
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Fig. 5. Chromosome structure 

 

The fitness of each of the chromosomes in the 

population is calculated using a “fitness function” that 

characterizes how well each particular member solves the 

given problem [6]. In this study, integral of the square of 

the error (ISE) is chosen as a fitness function 
 

2

0

,
k

ISE e dt   (11) 

 

where e represents the errors between the speed reference 

and the actual output speed and k is the end time for off-

line iterative computation. The ultimate goal of the use of 

the genetic algorithm is to achieve a minimal value of the 

objective function so as to improve the transient and stable 

response quality [15]. 

 

Application of GA for PI Controller Design 

 

During the computer simulations, the PI speed loop is 

reconstructed using the GA in order to achieve the 

desirable closed loop characteristics of the system. In this 

study, the genetic population consists of 8 chromosomes 

and the algorithm is terminated after 75 generations. The 

initial population is generated randomly. In each 

generation, a total of eight controllers (Kp and Ki pairs) are 

separately inserted into the DC motor drive system and the 

fitness values of the corresponding controllers are 

computed using the performance criteria defined in (11). 

According to these fitness values, the chromosomes in the 

population are sorted from the fittest to the worst. To use a 

50% discard rate results in discarding the bottom four 

chromosomes. Then, the four with the highest fitness 

survive to the next generation and become potential 

parents to generate child population. These potential 

parents are selected through tournament selection and four 

offsprings are produced to replace the discarded 

chromosomes in the population. After the natural selection 

process, the crossover and mutation operations are 

performed. The proposed PI tuning based on GA is 

schematically shown in Fig. 6. The genetic algorithm 

parameters used in the simulations are listed in Table 3. 
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Fig. 6. Block diagram of learning the GA based optimum speed 

controller for DC motor control drive. 

 
Table 3. Genetic Algorithm Parameters 
 

Genetic algorithm parameters 

Parameters  Values 

Population size  8 

Genetic algorithm parameters 

Parameters  Values 

Maximum generation  100 

Selection method  Tournament selection 

Crossover type 

Mutation rate (pm) 

 Uniform  

 0.3 

Discard rate (pd)  0.5 

Elitism  On  

Fitness function  ISE 
 

Simulation results 
 

In this study, the gains of a PI speed controller are 

adjusted employing the off-line iterative GA. Thus, GA 

determines the controller gains which are the most 

compatible and provide optimum performance. The results 

are obtained for cases such as step speed reference 100 

rad/s and 50 rad/s under 2 Nm load. Besides, in certain 

intervals, motor parameters (Bm, Jm) are changed and speed 

responses of all the controllers are observed. A hysteresis 

bandwidth of 0.3 is chosen. The results of ω response and 

the armature current waveform relating to the genetic PI 

controller are given in Fig. 7, when there is a change in 

reference speed. At t = 0, reference speed is set to 100 

rad/s and t = 1 sec, the reference speed is then decreased to 

50 rad/s. In Fig. 7.a, the motor speed follows the reference 

speed with no overshoot. The error between the reference 

and the actual motor speed in the steady-state is about 

0.0183 and its settling time to the reference speeds is 

approximately 0.36 sec and 0.115 sec, respectively. Fig. 

7.b shows the actual motor current following the reference 

current waveform in the hysteresis band. During the 

transient periods, current is maintained at 50 A according 

to the current limiter set and the average current being 

injected in the steady-state stabilizes at 1.2 A. 

 

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
0

25

50

75

100

time [sec]

sp
ee

d
 [

ra
d

/s
]

 
a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-60

-40

-20

0

20

40

60

time [sec]

ar
m

at
u

re
 c

u
rr

en
t 

[A
]

 

 

actual armature current

reference armature current

 
b) 

Fig. 7. Simulation results for the genetic PI controller under 

variable speed reference condition (a) speed response (b) 

reference and actual motor currents. 

 

Fig. 8 shows the performances for the two controllers 

under variable load condition while the motor is running at 

100 rad/s. At first, 10 Nm load is applied to the motor. At t 

= 1 sec, the load is completely removed from the motor 
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shaft and at t = 1.05 sec, 10 Nm load is applied to the 

motor again. 
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Fig. 8. Simulation results for the two controllers under variable 

load condition (a) comparative speed responses. Reference 

currents i*(t) using (b) fuzzy controller (c) genetic PI controller 
 

The speed responses are seen in Fig. 8.a. It is clear 

that the speed response for the genetic PI controller is less 

affected by the load change and has a smaller steady-state 

error compared to the fuzzy controller.  

Fig. 8.b represents the reference currents. Notice that 

as the reference currents for the two controllers changes so 

rapidly in response to the disturbances, recover time of the 

speed responses under the variable load condition is 

smaller. 
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Fig. 9. Speed responses for genetic PI and fuzzy controller 

A comparison for ω responses have been made 

between the controllers. The responses of the drive system 

are obtained by setting the reference speed to step 100 

rad/s at t = 0. The comparative system responses of the 

controllers are shown in Fig. 9. 

In Fig. 10, the performances of the genetic PI and 

fuzzy controller are examined by changing the motor 

parameters while the motor is running under 1.5 Nm. In 

the simulation, at t = 1 sec, the motor parameters Bm and 

Jm are increased 30 and 5 times, respectively. The motor is 

run for 0.5 sec under this condition and t = 1.5 sec, the 

parameters are returned to their previous values. The speed 

responses are seen in Fig. 10.a. During the variation of 

parameters, the fuzzy controller has led to a larger steady-

state error than the genetic PI controller. Hence, it can be 

easily said that the genetic PI controller is less affected by 

the parameter changes compared to the fuzzy controller. 

Fig. 10.b shows the motor armature current for the genetic 

PI controller. In this condition, the motor has drawn more 

current to meet the increased torque, which is closer to its 

rated current. 
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Fig. 10. Simulation results for the genetic PI and fuzzy controller 

under variable parameter condition (a) speed responses (b) motor 

armature current for the genetic PI controller 

 

Fig. 11 presents distributing situation of the best 

controller gains in the population during the evolution 

procedure according to versus generation. Generation 1 

shows the random initial gains. At the end of the learning 

algorithm, best controller gains have been found 

approximately Kp
*
: 39.1 A/rad/s and Ki

*
: 0.19 

A/rad.
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Fig. 11. The gain solutions of the best controller according to 

versus generation (a) proportional gain Kp (b) integral gain Ki 
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Conclusions 
 

The aim of this study is to compare the two 

controllers namely, Fuzzy PI and Genetic PI controller for 

the speed controller of a separately excited motor. The 

control system includes a hysteresis current controller as 

well as speed controller. The results of application of 

genetic PI controller are compared to those obtained by the 

fuzzy PI controller under variable reference speed, variable 

load and variable parameter conditions and are 

summarized in Table 4. The paper compares the 

performance of fuzzy PI controller with that of genetic PI 

controller and it is shown that the genetic PI controller 

provides slightly better results in terms of the settling time 

and steady-state error. As a result, tuning the controller 

gains using genetic based algorithms will provide better 

dynamic response for the speed control of dc motor drives. 

 
Table 4. Comparison of results 

Transient 

performance

Steady-state 

performance
Complexity Computational time 

Controllers

Specifications

Fuzzy PI

Genetic PI

Good

Better

Moderate

Complicated

Medium

Long

Good

Better
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N. Ozturk. Speed Control for DC Motor Drive based on Fuzzy and Genetic PI Controller – A Comparative Study // Electronics 

and Electrical Engineering. – Kaunas: Technologija, 2012. – No. 7(123). – P. 43–48. 

The aim of this paper is to design a speed controller of a DC motor by selection of a PI parameters using genetic algorithm and also 

to compare it with a fuzzy logic controller. The conventional PI controller has some disadvantage such as adjusting the gains, sensitivity 

to the controller gains and load disturbances. In order to overcome the disadvantages of the conventional PI controller, a genetic PI 

speed controller and a fuzzy controller for the drive system are applied to the speed loop of the DC motor and compared to each other. 

In the control circuits, the current control loop is also used in addition to the speed controller. Thus, the motor current is forced to stay 

within the hysteresis band determined by the upper and lower hysteresis limits. Simulations are realized and analyzed by the two 

different control strategies. It is observed that the genetic PI controller slightly enhances the performance and dynamics of the DC motor 

in comparison to a well-tuned fuzzy controller. The genetic PI controller is also less sensitive to the parameter variations and 

disturbances than the fuzzy controller. Ill. 11, bibl. 15, tabl. 4 (in English; abstracts in English and Lithuanian). 

 

 

N. Ozturk. Nuolatinės srovės variklio greičio valdymas naudojant neraiškiosios logikos ir genetinį PI valdiklį – lyginamoji 

analizė // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2012. – Nr. 7(123). – P. 43–48. 

Šio darbo tikslas suprojektuoti nuolatinės srovės variklio greičio valdiklį parenkant PI parametrus naudojant genetinį algoritmą ir 

palyginti jį su neraiškiosios logikos valdikliu. Tradicinis PI valdiklis turi keletą trūkumų, tokių kaip stiprinimo reguliavimas, jautrumas 

valdiklio stiprinimui ir apkrovos nevienodumui. Siekiant pašalinti šiuos tradicinio PI valdiklio trūkumus, genetinis PI greičio valdiklis ir 

neraiškiosios logikos valdiklis buvo pritaikyti nuolatinės srovės variklio greičio kontūrui ir palyginti vienas su kitu. Valdymo grandinėse 

srovės valdymo kilpa naudojama kaip greičio valdiklio priedas. Todėl variklio srovė verčiama likti histerezės juostoje, apribotoje iš 

viršaus ir iš apačios. Modeliavimas atliktas ir analizuotas taikant dvi skirtingas strategijas. Pastebėta, kad genetinis PI valdiklis truputį 

pagerina nuolatinės srovės variklio našumą ir dinamiką, palyginant su gerai suderintu neraiškiosios logikos valdikliu. Genetinis PI 

valdiklis yra ne toks mažiau jautrus parametrų kitimui ir trikdžiams kaip neraiškiosios logikos valdiklis. Il. 11, bibl. 15, lent. 4 (anglų 

kalba; santraukos anglų ir lietuvių k.). 

 


