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Introduction 

 
In mobile radio communications, due to a multipath 

propagation, the incoming signal at the receiver is 
corrupted by the fast fading effect i.e. the random fast 
fluctuations of the signal envelope [1, 2]. Also, due to the 
nature of the propagation medium, there can be also 
random slow fluctuations of the received average signal 
power (shadowing effect) [1–6]. In certain propagation 
environments (for example, communication systems with 
low mobility: an urban area with dense traffic and large 
number of mobile users which move with small velocity) 
the simultaneous influence of both fast and slow fading 
effect appears. In such situations it is necessary to 
represent a propagation channel by a composite fading 
model. Several composite models have been presented in 
the literature ([1] and references therein). Maybe the most 
known of these models assumes Nakagami-m distribution 
of signal envelope (i.e. gamma distribution of 
instantaneous signal-to-noise ratio (SNR)) and lognormal 
distribution of average signal power. However, a 
composite probability density function, obtained in this 
way, is in integral form and it is not convenient for further 
analysis. For this reason, equivalent gamma distribution, 
rather than lognormal distribution, is introduced for 
describing slow fading effect [3–6]. It is mathematically 
more versatile model and also accurately describes fading 
shadowing phenomenon. Consequently, obtained composite 
probability density function follows generalized K (KG) 
distribution, which proved to be particularly useful in 
evaluating the performance of composite channels [3–6].  

Diversity technique is a communication receiver 
technique that provides wireless link improvement at 
relatively low cost by combating the deleterious effect of 
channel fading and increasing the communication 
reliability without enlarging either transmitting power or 
bandwidth of the channel [1, 6–11]. Among the various 
known diversity combining techniques, selection 
combining (SC) is perhaps the most frequently used in 
practice because of its simplicity of realization [1, 6–8], 

[11]. It is combining technique where the strongest signal 
is chosen among L branches of diversity system. The 
criterion for the selection of the branch is the largest value 
of instantaneous SNR among the branches. That is the 
reason why all the calculations for receiver performances 
in this paper will be presented for SC technique at the 
reception.  

In [6] a detailed performance analysis for the most 
important diversity receivers (SC receiver among them), 
operating over a composite fading channel, modelled by 
the KG distribution, was presented. Expressions for 
important statistical metrics have been derived. By using 
them and by considering independent but not necessarily 
identicaly distributed fading channel conditions, several 
performance criteria have been obtained in closed form. 
Moreover, the average bit-error probability during the 
detection of binary phase shift keying (BPSK), differential 
binary phase shift keying (DBPSK) and 16-quadrature 
amplitude modulation (QAM) signal was studied. 
However, no phase error during extraction of the reference 
carrier in phase-locked loop (PLL) circuit was considered 
in the case of BPSK and QAM signal detection. 

Generally, the PLL is used for carrier signal recovery 
in the receiver. As the receiver is not ideal, a certain phase 
error appears. The phase error is a difference between the 
phase of the incoming signal and the phase of the 
recovered carrier signal in the loop, and this may lead to 
serious degradation of system performance. It is a 
statistical process which follows Tikhonov distribution 
[12–14].  

In this paper we discuss the detection of quadrature 
phase shift keying (QPSK) signals in a composite fading 
channel, which follows the KG distribution. The selection 
combining is applied at the reception, while the branches 
of the combiner in general are not identically distributed. 
The imperfect carrier signal recovery from non-modulated 
pilot signal is taken into account through the phase error 
that follows the Tikhonov distribution [12–14]. The 
influence of the fading parameters, the quality of the phase 
loop circuit and the number of diversity branches on the 
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system performance is examined. As a measure of the 
reception quality the bit-error rate and receiver sensitivity 
are used. Numerical results are confirmed by Monte Carlo 
simulations. 

The rest of the paper is organized as follows. First, 
we consider system model and introduce the analytical 
approach. Then, the numerical evaluation of BER 
performance and the simulation approach are described. In 
next section, numerical and simulation results with 
appropriate discussions are presented. The final section 
offers some concluding remarks. 

 
System model 

 
After propagation through the composite fading 

channel, signal at the k-th branch of SC receiver has the 
form 

   )())(cos()( 00 tntttrtz kkkk   , (1) 

where  trk  is the envelope of the received signal, 0  is 
the angular frequency of the carrier, 0Φ  is the transmitted 
phase of the signal, )(tk  is the random phase (the phase 
noise caused by a fading), and )(tnk  is the additive white 
Gaussian noise (AWGN) in the k -th diversity branch with 
zero mean value and variance 2 . It is assumed that the 
noise power is the same in every diversity branch and 
fading is uncorrelated among different branches. 
Depending on a sent symbol, in the case of QPSK signal 
transmission, 0Φ  can take following values from the set 

}4,43,43,4{Φ0   .  
Since the signal is transmitted over a composite 

fading channel, envelope of the signal in k-th input branch, 
 trk , is a statistical process and its instantaneous values 

fallow generalized K distribution [4] 
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where the second kind modified Bessel function of order v 
is denoted by  K  [15, Eq. (8.432)] and (.) is gamma 
function [15, Eq. (8.310)]. Parameters mm (  mm5.0 ) 
and ms are fading and shadowing shaping parameter, 
respectively. Larger values of these parameters indicate a 
smaller fading/shadowing severity. By setting different 
values of mm and ms, (2) can describe a great variety of 
short-term and long-term fading (shadowing) conditions, 
respectively. For example, as ms→∞,  kk rp  approximates 
the well known Nakagami-m fading channel model, while 
for mm=1 it approaches Rayleigh-Lognormal (R-L) 
fading/shadowing channel model [1, 6]. Also, for mm→∞ 
and ms→∞, (2) approaches the additive white Gaussian 
noise (AWGN) channel. The average signal power in k-th 

input branch is   skkkkkk drrprr  


0

22 . The probability 

density function (PDF) of instantaneous SNR is then  
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where ρ0k is average symbol SNR in k-th branch. The 
relation between the average symbol and bit SNR is 
ρ0k=ρ0bklog2M, where M is the number of modulation levels 
(in the case of QPSK it is M=4), )(log2  is the logarithm to 
base 2 and ρ0bk is average bit SNR.  

The chosen branch in SC circuit is the one with the 
strongest signal. The PDF of the SNR at the output of the 
combining circuit with L non identical branches can be 
written as [1] 
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where )( kkp   is the PDF of instantaneous SNR at the k-th 
branch and )( iiF   is the cumulative distribution function 
(CDF) at the i-th branch, defined as  

  i dttpF iii
 0 )()( . (5) 

Substituting (3) in (5) and then using relations [16, 
Eq. (26)] the closed form expression for CDF at the i-th 
branch can be obtained as  
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,  is the Meijer’s G-function [15, 

Eq. (9.301)].  
In the special case of independent and identically 

distributed (i.i.d.) branches expression (4) becomes  

 )()()( 1 
 L

kk FpLp . (8) 

The purpose of the PLL is to estimate the phase of the 
incoming signal. In ideal case, the estimated phase should 
be equal to the phase )(t  of the incoming signal. 
However, in practical realizations there is a certain 
disagreement between the estimated phase )(ˆ t  and the 
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phase )(t  of the received signal. This disagreement is 

phase error and it is expressed as )(ˆ)()( ttt   .  
The PDF for this phase error corresponds to 

Tikhonov distribution [12–14]  
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where )(I0  is modified Bessel function of the first kind 
and order zero [15, Eq. (8.406)]. Parameter αPLL represents 
the SNR in the PLL circuit and gives the information about 
the preciseness of phase estimation of incoming signal. It 
can be assumed αPLL=1/ 2

 , where σφ is a standard 
deviation of the phase error [12–14]. 

The expression for the conditional bit-error rate 
(BER) for QPSK signal, as a function of instantaneous 

symbol SNR in the channel 2

2
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and phase error φ, can be presented as 
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where  erfc  is the complementary error function [15, Eq. 
(8.250)].  

The average BER can be obtained by averaging (10) 
over all possible values of instantaneous symbol SNR, ρ, 
and phase error, φ 
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Numerical evaluation 
 

In order to obtain numerical results, it is necessary to 
compute values of double integral (11). There is a number 
of available numerical methods for calculation of these 
values, but there is no simple equivalent of Gaussian 
quadrature rule for multiple dimensions [17]. Therefore, to 
perform numerical cubature as required in this case, we 
revert to partial Gaussian quadrature rules for  and  
dimensions. This procedure is in general a suboptimal one, 
but it is intuitive and, in many cases it can prove very 
efficient. In short terms, the procedure yields a formula 
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where k and Ak are abscissas and weights, respectively, of 
well-known Gauss-Laguerre quadrature rules [17]. 
Abscissas n and weights Bn are easily obtained by 
transforming Gauss-Legendre abscissas and weights Pn 
and xn [17] 
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Fig. 1. Relative error of cubature formula (12) as a function of 
number of nodes, for L = 3, 0b = 15 dB,  = 5, mm = 1.6, and 
ms = 2.4 

 
There are two parameters N and K that can be 

adjusted in order to obtain results with reasonable 
accuracy. These parameters represent the orders of 
respective quadrature rules, and in Fig. 1. we investigate 
the values of N and K that are required to obtain results 
with given accuracy. We chose to compute a single BER 
for L = 3, 0b = 15 dB,  = 5, mm = 1.6, and ms = 2.4, 
which is approximately Pb = 1.81·10-5. Then, we use 
presented cubature method for different values of N and K 
and compute the results and their errors relative to the 
referent result that is more accurate. Relative errors are 
shown as contours in Fig. 1. For example, if we choose 
accuracy of 0.1% (this corresponds to roughly 3 accurate 
digits), with a small safety margin, we can estimate that we 
require number of nodes to be greater than 9 in   direction 
and greater than 17 in  direction. 
 
Simulations 
 

Independently of the analytical approach, Monte 
Carlo simulations were performed, too. The BER values 
are estimated on the basis of 2103 bit errors. A minimum 
number of bits, used to evaluate any BER value, is 104. A 
maximum number of bits, used in simulation, is 2109. 
Based on the results in the next section, one can notice that 
there is a very good agreement between numerical and 
simulation results. 
 
Numerical results 
 

Using (8)-(13), one can calculate the average BER for 
generalized K (KG) fading channel and discuss 
performances of the receiver for different values of mm and 
ms parameters, standard deviation of phase noise, σφ, as 
well as for different number of diversity branches L.  

In Fig. 2 the influence of shadowing intensity (ms 
parameter) on BER of QPSK signal detection is presented 
for different values of fast fading parameter mm. A 
selection combiner with two branches is used at the 
reception. Diversity branches are assumed non-identically 
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distributed and fast fading parameters differ in each branch 
(in this case mm1 and mm2). A phase error standard 
deviation is σφ. One can notice that, regardless of the 
values of mm and ms parameters, a BER floor appears. 
Therefore, further increase of ρ0b1 has no influence on BER 
value. This is because some of the received bits can be 
wrongly detected, due to the error in PLL, even when the 
power of additive Gaussian noise is approaching zero. For 
smaller values of mm (deeper fast fading) BER floor earlier 
arises, i.e. for larger average bit BER values. It can be 
noticed that BER decreases with mm and ms increasing.  
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Fig. 2. Influence of fading and shadowing parameters on BER 
performance 

 
Fig. 3 shows the influence of phase error on BER, for 

different values of fast fading parameter mm. For the 
purpose of comparison, an ideal case, the one without 
phase error, is given, also. Obviously, the phase error 
extremely impairs system performance. The phase error of 
σφ=10˚ already brings the BER floor and the increase of 
ρ0b1 can not further improve quality of reception. Of 
course, with the increase of σφ, this BER floor appears for 
lower ρ0b1 values. It can be concluded that σφ in the 
receiver has a crucial importance.  
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Fig. 3. Error probability for different values of phase error 
standard deviation 

In Fig. 4 one can observe the impact of non-identical 
fading distribution in diversity branches on system 
performance. The case of dual branch diversity reception 
and the different values of fading parameter in the first 
branch, mm1, is presented, while fading parameter of the 
second branch, mm2, deviates by 25% and 50% of mm1 
value. It can be seen that this effect of non-identically 
distributed branches achieves the greatest impact on the 
BER in the case of higher fast fading severity (smaller mm). 
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Fig. 4. Influence of non-identical fading distribution in diversity 
branches on system performance 
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Fig. 5. Influence of diversity order on BER performance 

 
The influence of diversity order on the performances 

of the receiver can be observed from Fig. 5 where 
dependence of the average BER on ρ0b1 is shown for 
different values of parameter L. With the increase of the 
diversity order, performance of the receiver improves. 
However, larger number of diversity branches reduces the 
additional gain and increases the complexity of the system. 
Therefore, it is necessary to find a compromise between 
the performances of the system and its complexity. Power 
gain is the highest when order of diversity system changes 
from 1L  to 2L . For example, in order to obtain the 
same value of BER=10-4, for parameter values mm=2.5, 
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ms=2 and σφ=10˚, it is necessary for average SNR to reach 
the value of ρ0b1=24.58dB for L=1, ρ0b1=16.88dB for L=2, 
ρ0b1=14.27dB for L=3, ρ0b1=12.89dB for L=4, 
ρ0b1=12.017dB for L=5, and ρ0b1=11.37dB for L=6. It can 
be noticed that the gain exponentially declines with the 
increase of the order of diversity system.  

Fig. 6 shows the influence of fading and shadowing 
parameters on minimum input average SNR (sensitivity) of 
the SC receiver required to produce a BER value of 10-4. 
Branches of the receiver are assumed identically 
distributed. Curves corresponding to sensitivity of 15dB, 
18dB and 21dB are presented for different values of phase 
error standard deviation σφ. The sensitivity increases with 
the decrease of σφ value, especially when shadowing and 
fading severity are low.  

 

 
Fig. 6. Required values of the first branch average input SNR per 
bit in order to achieve error probability 10-4 for different values of 
phase error standard deviation σφ  

 
Conclusions 
 

In this paper we have discussed the detection of 
QPSK signals in a generalized K composite fading 
channel. The selection combining has been applied at the 
reception, while the branches of the combiner have not 
been necessarily identically distributed. The imperfect 
carrier signal recovery has been taken into account through 
the phase error that occurs in PLL circuit. It is a random 
process and fallows the Tikhonov distribution. The 
influence of fading parameters, the phase error standard 
deviation and the number of diversity branches on the 
system performance have been examined. All numerical 
results have been confirmed by Monte Carlo simulations. 

As it was expected, BER decreases when shadowing 
and fading severity become low. The influence of 
shadowing parameter becomes determinative when the fast 
fading severity is low (especially in the range of larger 
average SNR).  

The phase error very strongly impairs system 
performance. We traced the influence of PLL circuit 
parameter on the quality of the reception (namely, the 
phase error standard deviation). The phase error of σφ=10˚ 
already brings the BER floor and the increase of ρ0b can 
not further improve quality of reception. Of course, with 
the increase of σφ, this BER floor appears for lower ρ0b 
values. It can be concluded that the quality of PLL circuit 
in the receiver has a crucial importance.  

The non-identically distributed fading in branches of 
SC receiver impairs the system performance. This effect 
achieves the greatest impact on the BER in the case of 
higher fast fading severity.  

With the increase of the diversity order, performances 
of the receiver improve. However, larger number of 
diversity branches reduces the additional gain and 
increases the complexity of the system. Therefore, it is 
necessary to find a compromise between the performances 
of the system and its complexity. 
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of Imperfect Reference Signal Recovery // Electronics and Electrical Engineering. – Kaunas: Technologija, 2011. – No. 9(115). – 
P. 41–46. 

This paper considers a partially coherent detection of quadrature phase-shift keying (QPSK) signals in a composite generalized K 
(KG) fading channel. At the reception the selection combining is applied, while the branches of the combiner are not identically 
distributed. The extraction of the reference carrier from non-modulated pilot signal is performed in a phase-locked loop (PLL) circuit. 
The difference between received signal phase and extracted reference signal phase is a stochastic variable with Tikhonov probability 
density function. The influence of the fading parameters, the standard deviation of phase error and the number of diversity branches on 
the system performance is examined. The bit-error rate is used as a measure of the reception quality. Ill. 6, bibl. 17 (in English; abstracts 
in English and Lithuanian). 
 
 
B. Nikolic, G. Dordevic, D. Milic, N. Miloševic. SC imtuvo našumo tyrimas atsižvelgiant  į apibendrinantįjį K slopinimą kanale // 
Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 9(115). – P. 41–46. 

Nagrinėjama dalinė koherentinė signalo, moduliuoto kvadratūrine fazine manipuliacija, detekcija atsižvelgiant į apibendrinantįjį K 
(KG) slopinimą kanale. Priėmus signalą analizuojamas nešantysis signalas. Nemoduliuoto signalo šaltinis atskiriamas  fazinėje kilpoje. 
Stochastinis kintamasis su Tikhonovo tikimybės tankio funkcija yra pagrindinis skirtumas tarp demoduliuoto signalo ir atskirto signalo 
šaltinio. Ištirta slopinimo parametrų, standartinio nuokrypio fazinė klaidos įtaka. Il. 6, bibl. 17 (anglų kalba; santraukos anglų ir lietuvių 
k.). 
 

 
 




