
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

1Abstract—In minutiae based fingerprint analysis,
fingerprint image is pre-processed before extracting features.
The pre-processing is carried out to obtain more accurate
minutiae points. Implementing fingerprint programs on
embedded systems can be considered as important especially
for real time standalone applications. Reducing the pre-
processing time is important for identification and verification
in real time embedded systems. In this study, pre-processing of
minutiae based fingerprint system is implemented on two
different platforms: Texas Instruments Sitara AM3359 which
is a single board computer and OMAP-L138 which is a
development kit. OMAP-L138 is a low power application
processor based on ARM9 and C674x DSP cores. AM3359 is
microprocessor unit based on ARM Cortex-A8 core.
Fingerprint pre-processing algorithms are implemented using
C/C++ compiler and tested on three different cores: ARM9,
DSP and ARM Cortex-A8. The execution times are compared
with each other. The results show that using DSP core,
execution time is substantially improved.

Index Terms—Fingerprint recognition, data pre-processing,
performance analysis, digital signal processors.

I. INTRODUCTION

Fingerprint, iris, retina, signature, face, DNA etc. are used
in biometric system. These characteristics are sometimes
combined together to improve the security of the systems.
Finger vein also is used for access control [1]. In another
study, to enhance the security of the computer access,
colours are considered [2]. Fingerprint recognition and
verification systems shows better result comparing to other
biometric systems.

For a minutiae based fingerprint recognition system,
before extraction minutiae, the pre-processing steps shown
in Fig.1 are applied. By applying these steps, more accurate
features are extracted from the fingerprint image taken by a
sensor. Pre-processing time consumes the most of the
processing time in minutiae based fingerprint recognition
system. Especially for a real time embedded system
requiring fast response time, pre-processing time has to be
reduced as much as possible.

In this study, a GUI (Graphical User Interface) fingerprint
pre-processing application designed on a PC (Personal
Computer) and then ported to evaluation platforms using
cross compiler and design environments. The execution

Manuscript received October 7, 2013; accepted January 15, 2014.

times of algorithms are evaluated on Sitara AM3359 Cortex-
A8 core, OMAP-L138 ARM9 core and C6748 DSP core.

Fig. 1. The pre-processing algorithms used in minutiae based fingerprint
analysis.

II. PRE-PROCESSING ALGORITHMS

A. Segmentation
Segmentation process is used to separate the fingerprint

image from the background image [3]. In the fingerprint
image, there may be some distorted areas or the regions
where the ridges and valleys of the fingerprint are not clear.
These unwanted regions are segmented by the algorithm. In
the segmentation based on variance value, fingerprint image
is divided into wxw sized blocks. The variation of each block
is calculated. If a variance of a block is less than a specified
threshold, this block is signed as a background image (1)
which does not contain fingerprint information [4].

These steps are carried out by using following equations
where m(i, j) is the average gray scale value of wxw sized
block (2) and v(i, j) is the variance of the block (3).

/ 2/ 2

/ 2 / 2

1(,) (,),
*

j wi w

u i w v j w
m i j I u v

w w

 (1)

/2/2 2

/2 /2

1(,) ((,) (,)) ,
*

j wi w

u i w v j w
v i j I u v m i j

w w

 (2)

1 (,) ,
0 .

if v i j Threshold
C

otherwise

(3)

M. Gok1, S. Gorgunoglu1, I. Muharrem Orak1

1Department of Computer Engineering, Karabuk University,
Karabuk, Turkey

gokmehmet@outlook.com

Fingerprint Pre-processing on ARM and DSP
Platforms

http://dx.doi.org/10.5755/j01.eee.20.6.7287

140

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

B. Determining Ridge Direction
The directions of the ridges on fingerprint are used in

several purposes such as to enhance the quality of the
fingerprint image and to classify the fingerprint. The
following steps are applied to determine the ridge direction
[5]. Fingerprint is divided into wxw sized blocks. The
gradient values in x and y directions of each pixel in the
block are calculated by sobel operator of (),(jix ,

),(jiy as given in (4) and (5):

1 0 1
(,) 2 0 2 ,

1 0 1

1 2 1
(,) 0 0 0 .

1 2 1

x

y

i j

i j

(4)

The direction of wxw sized block centred in (i,j) is
calculated as given in (6):

/2/2

/2 /2
(,) 2 (,) (,),

j Wi W
y x y

u i W v j W
V i j u v u v

 (5)

/2/2 2 2

/2 /2
(,) (,) (,),

j Wi W
x x y

u i W v j W
V i j u v u v

 (6)

1 (,)1(,) tan ,
2 (,)

y

x

V i j
i j

V i j
 (7)

where),(ji gives the angular direction of the block (7)
centred in (i, j).

C. Enhancement Algorithms
Enhancement is the elimination process of fingerprint

from noises. After determination of the ridge direction, the
mask of (3 × 9) shown in Fig. 2 is applied to fingerprint
image taking the direction of ridge into consideration. By
means of this process, tiny disconnections are repaired and
also the ridge is smoothed [6].

),(ji

),(jiI

a) b)
Fig. 2. Enhancement mask and its application.

Enhancement algorithm consists of following steps:
Transformed coordinates of I(i,j) pixel are calculated by

following equations:

'

'

(.cos .sin),

(.sin .cos),

j j u v

i i u v

(8)

where u and v take (-4, -3, …, 3, 4) and (-1, 0, 1) values

accordingly. The value of the (,)I i j pixel centred in the
mask is obtained from (10):

1 4

1 4
(,),

u v
K W u v

 (9)

1 4 ' '

1 4

1(,) (,) (,).
u v

I i j W u v I i j
K
 (10)

D. Binarization
Binarization is the transformation process of image pixels

into black or white scale. In this stage, the average value of
the local block is taken as threshold for binarization. This
process is done by applying following steps.

Fingerprint is divided into wxw sized blocks where w is
taken as 9. The average value of gray scale value for block
centred in (,)i j is calculated (11)

/2/2

/2 /2

1(,) (,).
*

j wi w
Local mean

u i w v j w
I i j I u v

w w

 (11)

If (,) (,)Local meanI i j I i j , then pixel is signed as white

and otherwise as black. This equation can be stated as given
in (12):

255 (), (,) (i,j),

0 (), .
Local meanwhite if I i j I

C
black otherwise

(12)

E. Thinning Fingerprint
Thinning process is to express the binarized fingerprint in

terms of a single pixel thickness. Thinning process consists
of four stages [7], [8]. Firstly, the targeted pixel has to be
black. If the pixel is white this step is skipped. Secondly,
vertical and horizontal neighbours of the targeted pixel have
to be white. Thirdly, at least one neighbour of the pixel has
to be black. Finally, while the targeted pixel is to be
removed, if connection is breaking down, the pixel has not
to be removed.

F. Elimination Algorithm
If enhanced fingerprint image is studied carefully, on

fingerprint ridges, disconnection, tiny bifurcation points and
small lines in few pixels length can be found. These have to
be removed by an elimination algorithm [9], [10].

III. EVALUATION PLATFORMS

A. AM3359 Sitara Processor Platform
The first test platform used in this study is a SBC (single

board computer) called BeagleBone Black. This SBC is
based on Sitara AM3359 MPU. AM3359 is manufactured by
Texas Instruments, has an ARM Cortex-A8 32-bit RISC
core running at speed of 1 Ghz. Sitara processors are
designed for high performance, feature-rich and low-power
industrial and consumer applications [11]. In this study,
HDMI output of the board is converted to VGA signal using
external converter hardware in order to display pre-
processor application GUI on a monitor.

141

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

The operating system running on BeagleBone Black is
Angstrom Linux 2013.09.05 distribution build for ARM
Cortex-A8 architecture. Windows manager is disabled to
save system resources so the application uses Linux frame
buffer mechanism to display GUI on monitor.

Design of pre-processor application is realized on a PC
running Linux Mint 15 operating system. This application is
built with Qt 4.8.5 cross platform GUI library using ×86. For
PC target of our application, pre-built Qt 4.8.4 library
provided in Linux Mint is used with GCC 4.7.3 compiler.
For ARM target of our application, Qt 4.8.5 source code is
configured and built for ARM Cortex-A8 architecture using
GCC version 4.6.3 (Sourcery CodeBench Lite 2012.03-57).
ARM version of the application is compiled and built on PC
and deployed to target BeagleBone through Ethernet. For
this reason build time is reduced.

B. OMAP-L138 Processor Platform
Our second test platform is Zoom OMAP-L138

eXperimenter kit. This kit has OMAP-L138 SOM (System
On Module). SOM has 8 Mbytes of NOR Flash and 128
Mbytes of Mobile DDR SDRAM with OMAP-L138
processor.

The OMAP-L138 C6000 DSP+ARM processor is a low-
power applications processor based on high performance
TMS320C674x DSP core and an ARM926EJ-S core [12].
It’s up to 456MHz with high performance and low price.

The operating system running on OMAP-L138 kit is
Arago Linux 2011.06 provided within Texas Instruments
Digital Video Software Development Kit (DVSDK). This kit
is a complete development framework including Cross
Compiler GCC 4.3.3, pre-built Qt 4.6.3 library and DSP
software libraries for ARM9 architecture.

IV. DEVELOPMENT OF PRE-PROCESSOR APPLICATION

Development of our application is realized using Qt
Creator IDE. All the pre-processing routines are coded from
scratch without use of any third party image processing
library.

A. Project Source of Pre-Processor Application
In the project tree (Fig. 4) the qtfip.pro is the project file

including build information for application. fi_process.h
includes function prototypes for pre-processing functions.
mainwindow.h includes definitions for main window of the
application. fiprocess.cpp includes fingerprint pre-process
function implementations. main.cpp includes application
main entry. mainwindow.cpp has the routines for main
window of the application.

Fig. 3. Project tree of the pre-processor application.

The application is built for AM3359 and OMAP-L138
ARM9 core using this project structure and appropriate
libraries and tool chains. For DSP implementation of the
algorithms, an extra tool is used. This tool provides access to
DSP core from ARM side of OMAP-L138 processor.

B. C6Run and DSP Side Programming
The C6Run tool moves DSP development into the domain

of the ARM/Linux programmer by masking many of the
details of programming the DSP. With C6Run, the user can
move pieces of an application from the ARM core to the
DSP core by simply rebuilding code. This tool enables code
executing on the DSP to appear as just another process in the
ARM operating system [13].

Fig. 4. C6RunLib build mechanism.

In this study, C6RunLib tools are used to run algorithm on
DSP side. The c6runlib tools consist of a compiler (c6runlib-
cc) and an archiver script (c6runlib-ar). The compiler script
allows the developer to compile C code to C6000 object file
format. The archiver tool is used to create a library from one
or more object files. The c6runlib archiver tool takes the
C6000 object files to produce a static ARM library. As
shown in Fig. 4, this library is then linked to ARM-side
object files to produce an ARM executable.

V. EXPERIMENTAL STUDIES

For the test purposes, fingerprint test images are taken
from the FVC2004 fingerprint database. Test set includes
sampled DB1_A, and DB4_A images. Time measurement is
done in terms of milisecond (ms) using Qt timer API. ARM
and DSP execution times of the algorithms are given in
Table I and Table II.

TABLE I. EXECUTION TIME OF PRE-PROCESSING ALGORITHMS
ON DIFFERENT CORES FOR 288 × 384 SIZED IMAGE.

Pre-processing
algorithms Execution Time (ms)

AM3359
ARM

Cortex A8
(1 GHz)

OMAP-
L138

ARM9 (456
MHz)

OMAP-
L138 C674x

DSP (456
MHz)

Speed
up

Ratio

Segmentation 13 299 12 1.083
Determining

ridge direction 320 4762 1014 0.316

Enhancement 682 12185 459 1.486
Binarization 1587 12933 464 3.420

Thinning 196 1603 125 1.568
Elimination 544 5723 243 2.239

Total 3342 37505 2317 1.442
Image size (288 × 384), Number of pixels(110592), Local block size w =

24, DB4_A (1_1.tif)

It can be seen from Table I and Table II that, pre-

142

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

processing done with DSP has achieved better performance
although running at slower clock speed. Only determining
ridge direction step is slower than ARM Cortex A8 Core.

TABLE II. EXECUTION TIME OF PRE-PROCESSING ALGORITHMS
ONDIFFERENT CORES FOR 640 × 480 SIZED IMAGE.

Pre-processing
algorithms Execution Time (ms)

AM3359
ARM

Cortex A8
(1 GHz)

OMAP-
L138 ARM9
(456 MHz)

OMAP-
L138 C674x

DSP (456
MHz)

Speed
up

Ratio

Segmentation 36 695 28 1.286
Determining

ridge direction 679 9257 1461 0.465

Enhancement 1735 29674 1186 1.463
Binarization 3259 19251 1010 3.227

Thinning 338 2006 238 1.420
Elimination 1585 16855 594 2.668

Total 7632 77738 4517 1.690
Image size (640 × 480), Number of pixels(307200), Local block size w =

24 DB1_A (1_1.tif)

Therefore DSP execution time of this step is slower than
Cortex-A8 core. Other than this step, ARM9 core shows
worse performance in terms of execution time. This can be
clearly seen on Fig. 5.

Fig. 5. Execution time on different cores using 640 × 480 sized image.

Fig. 6. The speedup ratio of pre-processing algorithms.

The speedup ratio between selected platforms (i.e. ARM
Cortex A8 and L138 C674x DSP core) are calculated for
both sampled data on Table I and Table II. These ratios are
shown together also on Fig. 6. It is obvious that with the
increase of image sizes, execution times also increase
linearly. Therefore the size of images does not have impact
on the speed-up ratio. It can also been seen from Table I and

Table II that average speedup ratio for pre-processing times
are 1.442 and 1.690 accordingly.

VI. CONCLUSIONS

In this study, pre-processing of minutiae based fingerprint
system is realised on two different processors core.
Execution time of each pre-processing algorithm on ARM
and DSP microprocessors are computed and also
comparison is done by speed-up ratio. These values show
which algorithm can be executed effectively in which
microprocessor. It has been shown that pre-processing
algorithms for fingerprint can be implemented in embedded
systems. Although the image dimensions in FVC2004
database are rather large for an embedded system, test
results show that both ARM Cortex-A8 and DSP cores can
be used in an embedded fingerprint verification and
recognition system. ARM9 core of OMAP-L138 is not
suitable for operations requiring floating point operations. It
is suitable for running embedded operating system and user
interface tasks. In future work, minutiae extraction and
fingerprint matching algorithms will be ported for evaluation
platforms. A fingerprint database will be created and tests
will be done for real world conditions. A capacitive
fingerprint sensor like FPC1011F will be interfaced to the
microprocessors to complete development platform. This
sensor provides a high quality fingerprint image.

REFERENCES

[1] A. Venckauskas, N. Morkevicius, K. Kulikauskas, “Study of finger
vein authentication algorithms for physical access control”,
Elektronika ir Elektrotechnika, vol. 121, no. 5, pp. 101–104, 2012.

[2] F. Yucel, O. Oral, N. Caglayan, M. Tecimen, S. Kocak, E. Yuce,
“Design and implementation of a personal computer system using
color detection”, Elektronika ir Elektrotechnika, vol. 115, no. 9, pp.
97–100, 2011.

[3] S. Gorgunoglu, A. Cavusoglu, “A fast and simple algorithm for
fingerprint segmentation”, Teknoloji, vol. 11, no. 2, pp. 87–92, 2008.

[4] B. M. Mehtre, B. Chatterjee, “Segmentation of fingerprint images –
a composite method”, Pattern Recognition, vol. 22, no. 4, pp. 381–
385, 1989. [Online]. Available: http://dx.doi.org/10.1016/0031-
3203(89)90047-2

[5] L. Hong, Y. Wan, A. Jain, “Fingerprint image enhancement:
algorithm and performance evaluation”, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 20, no. 8, pp. 777–789,
1998. [Online]. Available: http://dx.doi.org/10.1109/34.709565

[6] A. Cavusoglu, S. Gorgunoglu, “A fast fingerprint image enhancement
algorithm using a parabolic mask”, Computers & Electrical
Engineering, vol. 34, no. 3, pp. 250–256, 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.compeleceng.2006.11.006

[7] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal
Processing, San Diego: California Technical Publishing, pp. 436–
442, 1999.

[8] V. Espinosa-Duro, “Fingerprints thinning algorithm”, Aerospace and
Electronic Systems Magazine IEEE, vol. 18, no. 9, pp. 28–30, 2003.
[Online]. Available: http://dx.doi.org/10.1109/MAES.2003.1232157

[9] M. Tico, P. Kuosmanen, “An algorithm for fingerprint image
postprocessing”, in 34th Asilomar Conf. Signals, Systems and
Computers, vol. 2, 2000, pp. 1735–1739.

[10] Q. Xiao, H. Raafat, “A combined statistical and structural approach
for fingerprint”, IEEE Int. Conf. Image Postprocessing, Systems,
Man and Cybernetics, 1990, pp. 331–335.

[11] Sitara AM335x ARM Data Manual, Texas Instruments Incorporated,
12500 TI Boulevard Dallas, 2013.

[12] A. Wang, F. Pan, Y. Li, R. Tao, “The design of power quality
detecting system based on OMAP-L138”, in IEEE 13th Workshop on
Control and Modelling for Power Electronics (COMPEL 2012),
2012, pp. 1–4.

[13] C6Run DSP Software Development Tool White Paper. Texas
Instruments Incorporated, 12500 TI Boulevard Dallas, 2013.

143

