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1Abstract—Time-triggered Co-operative (TTC) scheduler
provides a simple and reliable operating environment that
matches precisely the needs for use in safety-related
applications. However, in the design and implementation
phases, such scheduler may be suffered from several failure
modes that are the fragility of scheduler and the impact of task
jitter. The main contribution of this paper is to address the
need for an effective scheduling algorithm and scheduler
implementation to assure that the TTC can be executed
appropriately without an impact on the timing behavior in the
system. The paper has developed an algorithm called “TTSA-
MTI” to automate the process of scheduling TTC-MTI
scheduler which is designed based on the employment of
“Sandwich Delay” mechanisms and technique of “Multiple
Timer Interrupt”. The results show that the proposed
algorithm can help in a significant reduction of computation
time and achieve better performances in task release jitter as
opposed to a related scheduler. In conclusions, the paper
indicates that TTSA-MTI algorithm is an effective task
scheduling for use with a range of TTC architecture.

Index Terms—Time-triggered co-operative scheduler,
offline scheduler, sandwich delay mechanism, time-triggered
architecture.

I. INTRODUCTION

When developing software architecture that applied in
many safety-related and safety-critical embedded systems, it
is generally recognized that the use of “time-triggered” (TT)
architecture offers significant advantages over other
alternative approaches [1], [2]. The TT architecture is
referred as “offline scheduler” or “static scheduler”
architecture, it is statically computed before the system
begins to execute [1][4]. This means that such architecture
prepares a complete planning sequence of all task set before
executing the system. As a result, the TT system can help to
produce highly predictable patterns of behaviour and suit for
many safety-related applications such as in automotive
systems, biomedical equipment, and control applications [5],
[6].

In the TT designs, task scheduling can be characterized
into two different types of scheduling algoritms: time-
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triggered co-operative (TTC) and time-triggered pre-emptive
(TTP) scheduler. The co-operative scheduler also known as
“non-preemptive”, only one task is executed at any point in
time, this task runs to completion, and then return to the
schedule [7]. As for pre-emptive scheduler, the task with the
highest priority that is ready to execute is always allowed to
control the CPU [3], [4]. However, many researchers stated
that TTC scheduler provided a simple and reliable operating
environment, with appropriate designs and implementations,
this scheduler can be applied in the systems which have hard
real-time characteristics [8][10].

When designing TTC architecture, the most cases are
employed a typical “TTC-Dispatch” scheduler because this
scheduler is simple and very useful while using in a
resource-constrained system. Despite many advantages,
there are failure modes that can greatly impair system
performances. These are the fragility of scheduler, the
problems of task jitter, and task overruns [5], [11]. To avoid
these problems, there is other design option by developing
the scheduler implementation based on the employment of
“Sandwich Delay” (SD) mechanisms and technique of
“Multiple Timer Interrupt” (MTI) called “TTC-MTI”
scheduler. Reference [12] indicated that TTC-MTI scheduler
achieved better performance in timing behaviour as opposed
to TTC-Dispatch. However, as for task scheduling in TTC-
MTI scheduler, there has been a few studies explore the
algorithm to automate the process of such scheduler.

According to the aim of this paper, it is attended to
address the need of an effective scheduling algorithm and
scheduler implementation for use with a range of TTC
architecture to assure that the developers can select an
appropriate scheduling method and the scheduler
implementation without having an impact on the timing
behaviour in the system. This paper is organized as follows:
Section II gives related work of scheduling in real-time
system. Section III presents the operation of TTC scheduler.
Section IV modifies the technique of TTSA-MTI scheduler.
Section V evaluates the proposed algorithm. Finally, Section
VI concludes the use of proposed technique.

II. RELATED WORK

There has been a considerable amount of previous work
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on the scheduling algorithms and scheduler implementations
in time-triggered architecture.

A. Scheduling Algorithms in Real-Time Embedded Systems
In literatures, Cottet stated that scheduling algorithm

assigns tasks to processor and provides an ordered list of
tasks [3]. Therefore, scheduling algorithm is the key
component to basically determine the way in which task will
be executed by the scheduler. In task scheduling, while the
order of task execution is determined based on its priority,
the tasks are assigned priorities either “Fixed priority” or
“Dynamic priority” [2], [4], [13].

In a fixed priority assignment, the priorities of the tasks
are assigned before the scheduler begins to execute and
those priorities remain unchanged during the life-time of the
system. The most popular fixed priority scheduler is the Rate
Monotonic and Deadline Monotonic algorithm [14], [15]. As
for the dynamic priority, the priority assigned to a given task
can be changed at run time. It is basically based on a
dynamic parameter that may changes during the system
evolution [3]. Examples of common dynamic priority
algorithm are Earliest-Deadline-First and Least-Laxity-First
[4], [16].

In cases of task scheduling in time-triggered resource-
constrained embedded system, one of the simplest scheduler
is a cyclic executive, it generates a complete sequence of
periodic task with highly-predictable schedule [9]. The TTC
design is also a simple cyclic-executive scheduler that
designs complete co-operative tasks on a processor
according to an offline scheduler [7]. In addition, there are
other design options that involve task pre-emption. For
examples: Time-Triggered Rate Monotonic (TTRM) and
Time-Triggered Hybrid (TTH) scheduler [7].

B. Scheduler Implementations in TT Architecture
With regard to implement the TT scheduler in small

embedded devices, many researchers agreed with building
software without real-time operating system (RTOS)
because such system requires a large amount of computation
and memory resources which is not readily available in
resource-constrained environment [7], [17]. Therefore,
despite a full RTOS, some forms of simple schedule is
generally be implemented.

In literatures, the most cases of TTC architecture were
implemented by “TTC-Dispatch” scheduler. For example,
Pont employed TTC-Dispatch scheduler by using simple
embedded operation system which integrated of operating
system becomes a part of the application itself [7], [18]. This
work demonstrated that such scheduler used a few hundred
line of high-level programming, very low processor load,
easy to port the system onto a new device environment, and
very useful while using in a resource-constrained system.
Besides, there have been significant studies to improve the
capability of such scheduler. As Phatrapornnant and Pont
has presented, they maintained their low-jitter characteristics
with dynamic voltage scaling (DVS) technique to reduce
system power consumption in TTC scheduler [5]. In similar
case, Hughes employed a Task Gardian (TG) mechanism to
reduce the impact of task overruns in TTC system [19].

III. TTC SCHEDULER OPERATION

The operation of a traditional TTC scheduler is
considered to analyse cause of the problems while
employing such system.

A. The Typical TTC-Dispatch Scheduler
The normal operation of TTC-Dispatch scheduler is

briefly described in this part. An example of TTC-Dispatch
design can be shown in Fig. 1. In this figure, there are two
significant cycles for scheduling which are major cycle and
minor cycle. The major cycle is the periodic time which
tasks are executes in form of cycle. Such cycle is divided
into a number of small cycles called “minor cycle” or “tick”
interval.

The flowchart of a TTC-Dispatch scheduler can be
illustrated in Fig. 2. This scheduler is usually implemented
using an on-chip timer, which will be set to generate
interrupts on a periodic basic or tick interval [11]. At the
beginning, the parameters of the timing scheduler are set,
followed by the initialization of all tasks, and adding those
tasks in the task queue data structure. During the operation,
Dispatch (function) is invoked from within an endless loop
in the foreground processing. The Dispatch examines each
task in list and executes any tasks which are due to run in
this tick interval. After completed their execution, the
scheduler then calls Sleep (function) to place the processor
into an idle mode to reduce power of system. When the tick
(timer ISR) occurs, the Update (function) is invoked and the
scheduler then back to foreground again and the cycle
thereby continues.

Fig. 1. The operation of a typical TTC-Dispatch scheduler.

Fig. 2. Flowchart of a TTC-Dispatch scheduler.
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B. Time-Triggered Scheduling Algorithm in TTC Scheduler
As for the TT scheduling algorithm, there has been

designed the algorithm to automate the process of
configuring TTC scheduler called “TTSA” algorithm [11].
This algorithm is designed to test the schedulability of all
tasks in the system and identified a scheduler to assure that
all task constraints are met. It can help developer to reduce
time at the design process. However, in situations that the
system has large-scale of task set, this may take a long
computation time for testing schedulability due to the
algorithm will proceed iteratively until the search identifies
the first workable solution.

C. Causes of the Problems
Despite many advantages, if inappropriate designs, the

TTC-Dispatch scheduler may have suffered from failure
modes that can greatly impair system performances, can
identify as follows:

1. The scheduler is very fragile in the during overload
situations, since a task exceeding its predict execution
time, this can generate a domino effect on the subsequent
tasks [20]. More specifically, a task overrun that does not
return causes the system to hang indefinitely [19].
2. The scheduler may be suffered from the variation in
time called “release jitter”, the causes of jitter can identify
several possible which are variation time by interrupt
timing behaviour, scheduler overhead, and task placement
[5], [12].
Both problems can also be addressed by using various

techniques such as DVS and TG mechanism [5], [19].
However, these techniques are very complicated due to the
developers necessary to integrate complex techniques
altogether and a need to construct with high resource
requirements. In practical terms, this may be unsuitable
applying with the realistic cases in resource-constrained
system.

IV. MODIFIED TECHNIQUE OF TTC SCHEDULER

The software tool which can help to address the need for
effective TTC scheduler is described in this section.

A. Modified Implementation Based On the Employment of
“Sandwich Delay” and “Multiple Timer Interrupts”

Time-Triggered Co-operative Multiple Timer Interrupts
(TTC-MTIs) scheduler is designed to address the impact of
task placement and the problem of jitter at the starting time
of the tasks. All tasks which employ such technique can be
executed separately without an impact on the task placement
of the preceding tasks.

To clarify the TTC-MTI scheduler, the technique has
modified implementation by using two interrupts for
schedule which are Tick interrupt and Task interrupt [12].
Tick interrupt is used to generate the periodic tick interval
whereas Task interrupt is used to notify for execution task
within the period of Tick interrupt. Figure 3 illustrates an
example of the process of multiple timer interrupts technique
with employments SD mechanism to fixed period of each
task which runs in tick interval. In this figure, to reduce jitter
of Task B, the required release time prior to Task B is equal
to the worst-case execution time (WCET) of Task A plus

scheduler overhead. This technique can save the power using
by enter to an idle mode after completion of each task.

Fig. 3. The operation of TTC scheduler based on MTI technique which
employs SD mechanism.

B. TTSA-MTI Scheduling Algorithm
The proposed algorithm which can help to schedule the

process of TTC-MTI implementation called “time-triggered
scheduling algorithm with multiple timer interrupts” (TTSA-
MTI). Figure 4 shows flowchart for testing the
schedulability of such algorithm.

Fig. 4. Flowchart for testing the schedulability of the TTSA-MTI
algorithm.

The TTSA-MTI algorithm can be described as follows:
1. Input a list of task specifications and constraints to the
algorithm, each task ti comprises of the following
parameters by equation as

 , ,i i i i it = p ,c ,d o (1)

where ‘pi’ is the task period, ‘ci’ is the worst-case execution
time, ‘di’ is the task’s relative deadline, and ‘oi’ is the task
offset time.

2. The algorithm calculates and tests the CPU utilization
of the task set, denoted as ‘U’. The processor utilization
factor of a set of n periodic task can be given by equation
as

1
  .
n

i

ciU
pi

 (2)

3. In the utilization’s testing, if the utilization is greater
than processor capacity, this means that the system cannot
be scheduled at all. In contrast, if the utilization is not
greater than the processor capacity (U < 1), the algorithm
will be calculated the length of major cycle (LCM), the
total number of tasks in major cycle (LCMtotal), and the

124



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

most suitable tick interval (Tick) following by equations
as:

1 2{ , ,..., },nLMC lcm p p p (3)

1
,

n
total

i

LCMLCM
pi

  (4)

1 2{ , ,... },nTick gcd p p p (5)

where ‘lcm’ is the least common multiple and ‘gcd’ is the
greatest common divisor.

4. The algorithm will test the schedulability by (6), if the
tick interval (Tick) is greater or equal to the summation of
WCET of all tasks and scheduler overhead. This means
that all tasks can be scheduled. On the other hand, the
system cannot be scheduled

1
[ ] .

n

i
Tick wcet i Overhead


  (6)

As regards to scheduler overheads, there are many factors
which can be lead to a different level of the overhead, such
as the scheduler technique, the number of tasks in the
system, and the speed of CPU used to implement the system
[11]. However, the scheduler overhead of this algorithm
comprises of the tick interrupt overhead (Overheadtick) and
the task interrupt overhead (Overheadtask). These overheads
arise from the time spent in handling the interrupt service
routing (ISR) and while updating and checking the schedule
of each task following by equation as

1
 + .

n
tick task

i
Overhead = Overhead Overhead [i]


 (7)

C. TTSA-MTI Scheduling Implementation
In the scheduler implementation, the scheduler is

calculated the length of major cycle, the total number of
tasks in the LCM, and the most suitable tick interval in order
to configure the timer of the tick interrupt and prepare to
arrange tasks in the LCM. In addition, the scheduler is
calculated the required release time of all tasks to avoid the
problem of task release jitter by placing SD mechanism
around tasks which execute prior to other tasks in the same
tick interval. The require release time of each task is equal to
the sum of WCET of the preceding tasks plus the scheduler
overhead following by equation as

,
k-1

r
i=1

t (k) = (wcet[i] +Overhead[i] ) (8)

where tr is required release time of each task in tick interval.

V. EVALUATING THE TTSA-MTI ALGORITHM

To evaluate the performance of TTSA-MTI scheduler, it
presents algorithm and system performance, and also the
jitter results by comparing with a traditional scheduler.

A. Algorithm Performance
The algorithm performance was focused to measure the

computation time of schedulability test. It then compared
between the traditional TTSA and the proposed algorithm.
1) Hardware Platform and Software Development Tools

In this experiment, the target platform is a small
microcontroller LPC2129. The LPC2129 is based on a
32 bit ARM7 microcontroller, which is used an oscillator
frequency of 12 MHz and a CPU frequency of 60 MHz. The
CPU consists of two 32 bit timers with 4 multiple channels
in each timer. Accordingly, this CPU has enough timers to
implement the TTSA-MTI scheduler. As for the software
development, this paper used development tools from Keil
products [21]. The tool chain was used RealView MDK
version 4.12.
2) Task Specifications

To explore the performance of this algorithm, 100 tasks
were randomly generated. By assuming all tasks are period,
the deadline is equal to its period, and the random task set
can be scheduled at all. In addition, the worst case execution
time of all tasks is generated according to the following
inequalities:

 0< 100 0 ,WCET i us (9)
( ) ( ) 10000 .WCET i P i us  (10)

3) Results
In the experiment, the computation time of TTSA and

TTSA-MTI algorithm can be shown in Fig. 5. The result
shows that scheduling time of both algorithms is increased
following the number of tasks in the system. Furthermore,
TTSA-MTI scheduler is significant reduction in computation
time when compare with a traditional approach.

B. System Performance
For meaningful testing the system performance, the

experiments were tested and compared the performance of
traditional TTC-Dispatch and proposed TTC-MTI
scheduler.
1) Measurement approach and methodology

In order to investigate the system performance,
measurement were taken for the CPU test and memory
requirements. The test was run system approximately 25
seconds, and then measured the scheduler time.
2) System performance results

Fig. 5. Computation time of the schedulability analysis between TTSA and
TTSA-MTI algorithm.
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Table I shows the CPU overhead and memory
requirements of TTC-Dispatch and proposed scheduler. The
results show that the scheduler overheads of both schedulers
were slightly different. However, the memory requirements
of proposed scheduler was required more code memory than
TTC-Dispatch approximately 2.3 Kbytes.

TABLE I. COMPARISON OF THE SYSTEM PERFORMANCE IN THE
TTC-DISPATCH AND TTC-MTI SCHEDULERS.

Scheduler TTC-Dispatch TTC-MTI
Scheduler time (s) 7.45 7.40

Total time (s) 25 25
Scheduler overhead (%) 29.80 29.60

ROM (bytes) 11,912 14,272
RAM (bytes) 3,732 3,340

C. Jitter Test
1) Measurement Approach and Methodology

In an ideal timing of the system, when task is ready to
execute, it should be started at the same place in each period.
If the task execution deviates from its ideal release time,
then this time variation is described as release jitter. Fig. 6
shows multiple instances of a periodic task that refers to
release jitter. From the figure, task is character by its starting
time ‘s’, release time ‘r’ , and release jitter ‘x’.

Generally, release jitter can be expressed as relative
release jitter and as absolute release jitter. Relative release
jitter is the maximum deviation of the start time of two
consecutive instances [22]. The relative release jitter can be
expressed as

.i k i,k ,k i,k-1 1i,k-i|(s )RRj = max  - r – - rs )( | (11)

As per absolute release jitter, this is the maximum
deviation of the start time among all instances [22]. The
absolute release jitter can be expressed as

.i k i,k ,k ki i,k ki,ARj = max - r – min ( - r(s ) s ) (12)

Another significant measurement is the average jitter, this
is represented by the standard deviation in the measure of
average periods [12]. In this experiment, relative release
jitter and absolute release jitters were used to assess the jitter
level and analyse the system reliability of TTC schedulers.

Fig. 6. Release jitter in periodic task.

2) Task Specification
To allow exploring the impact of task release jitter, 200

set of tasks were randomly generated. Figure 7 shows an
example of the task set for experiment. Each task set
consisted of three tasks, Task A which has the highest
priority was scheduled to run every two ticks whereas task B
and task C were run every tick interval. Note that task C is
assigned as the lowest priority.

Fig. 7. Graphical representation of the task set in jitter test.

3) Jitter Results

TABLE II. TASK RELEASE JITTER FROM THE TTC-DISPATCH AND
TTC-MTI SCHEDULERS.

Scheduler TTC-Dispatch TTC-MTI

Tasks Task
A Task B Task C Task A Task B Task C

Min Period
(us) 1,999 934 930 1,999 989 970

Max period
(us) 2,001 1,057 1,095 2,001 1005 1,015

Average
Period (us) 2,000 995.5 1012.5 2,000 997 992.5

Absolute
jitter (us) 2 123 165 2 16 42

Fig. 8. Comparison of release jitter values in TTC-dispatch and TTC-MTI
scheduler.

To explore the jitter level of both algorithms, the
measurement between the start time of two consecutive
instances of the dummy task were measurement by using
LabView 11.0 software and NI USB-6008 hardware. In each
experiment, 10,000 consecutive pulse widths were measured
to give the results presented in this paper. Table II and
corresponding Fig. 8 show the result of release jitter from
both schedulers.

VI. CONCLUSIONS

This paper is attended to overcome the problems of the
fragility and the impacts of task release jitter in TTC
scheduler by employing the scheduler implementation called
“TTC-MTI” scheduler. To assure that the developers can
select an effective scheduling algorithm, this paper proposed
algorithm called “TTSA-MTI” to automate the process of
scheduling in such scheduler. The results show that the
TTSA-MTI algorithm can help in a significant reduction of
computation time and available to overcome the problem of
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task release jitter as opposed to a traditional scheduler.
Overall, this work concludes that the use of TTSA-MTI
algorithm is an effective task scheduling for use with a range
of TTC-MTI scheduler. This is also a practical way of
implementing TTC architecture with resource-constrained
embedded system.
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